
ManualManual

Python Decoder DevelopmentPython Decoder Development

Product Version v24.1.0

December 18, 2023

Analysis Suite

Imprint

PROCITEC GmbH

Rastatter Straße 41

D-75179 Pforzheim

Germany

Phone: +49 7231 15561 0

Fax: +49 7231 15561 11

Email: service@procitec.com

Web: www.procitec.com

Authorised Representative:

Dipl.-Ing. (FH) Dipl.-Inf. (FH) Jens Heyen

Registration Court:

HRB 504702 Amtsgericht Mannheim

Tax ID:

DE 203 881 534

Document ID:

PROCITEC-IMA-pyDDL_E-7f142bd669

All product names mentioned in this text are trademarks or registered trademarks of the respective title-
holders.

© 2023 PROCITEC GmbH

All content, texts, graphics and images are copy-righted by PROCITEC GmbH, if not stated otherwise. Re-
production in any form, the rights of translation, processing, duplication, modification, use and distribution
by use of electronic systems in whole or part are strictly prohibited.

Subject to technical modifications.

mailto:service@procitec.com
https://www.procitec.com

PYTHON DECODER DEVELOPMENT Analysis Suite

Contents

1. Manual . 1

1.1. Overview . 1

1.2. Tutorial for Writing Decoders . 2

1.2.1. Support Module hng_fec_alphabet.py . 2

1.2.2. Main Decoder Module hng_fec_dec.py . 3

1.2.2.1. Preface and General Structure . 3

1.2.2.2. Decoder Main Function . 4

1.2.2.3. Code Structure Alternatives . 6

1.3. Decoder Development Using Spyder . 7

1.3.1. Creating and Using a New Decoder . 7

1.3.2. Editing an Existing Decoder . 8

1.3.3. Running a Decoder . 9

1.3.3.1. Execution Mode Decoder only . 10

1.3.3.2. Execution Mode Signal processing and decoder 11

1.3.3.3. Decoder Parameters . 12

1.3.4. Examining and Saving Decoder’s Output . 12

1.3.5. Debugging a Decoder . 14

1.3.5.1. Examining variable values . 16

1.3.5.2. Graphical Display of a BitBuffer . 17

1.3.6. Profiling a Decoder . 18

1.3.7. Known Spyder Issues . 20

1.3.7.1. OpenGL Error . 20

1.3.7.2. Object Explorer . 21

1.4. Customizing Python environments . 21

1.4.1. Adding new packages . 22

1.4.2. Non-priviliged package installation in Spyder . 23

1.4.3. Decoder module/package inspection in Spyder . 24

1.5. Using DLLs/Shared Libraries . 25

1.5.1. Creating Shared Libraries . 25

1.5.2. Loading External Libraries . 26

1.5.3. Calling Function from Loaded Libraries . 26

1.5.3.1. Passing Scalar Values by Value and by Pointer 26

1.5.3.2. Passing Arrays . 27

1.5.3.3. Passing an array of pointers (multidimensional arrays) 28

1.5.3.4. Using Structures . 29

1.5.3.5. Retaining Independent States and Using Classes 30

1.5.4. Using Libraries Created for Non-Python DDL . 31

© 2023 PROCITEC GmbH i

Analysis Suite PYTHON DECODER DEVELOPMENT

1.6. Tools for testing, executing and packaging of decoders . 31

1.6.1. Executing a decoder . 32

1.6.1.1. Using a Python script . 32

1.6.1.2. Using the command line . 33

1.6.2. Bundle a decoder into a decoder package . 33

1.6.2.1. Using a Python script . 33

1.6.2.2. Using the command line . 34

2. Reference . 35

2.1. Decoder Runtime . 35

2.1.1. Top-Level API . 35

2.1.2. Input . 41

2.1.3. Output . 43

2.1.4. State and Parameters . 46

2.1.5. File Output . 57

2.1.6. Audio Output . 60

2.1.7. Standalone runtime . 61

2.2. BitBuffer . 62

2.2.1. BitBuffer . 62

2.2.2. BitStream . 75

2.2.3. Helper Functions . 78

2.2.4. Shift Operations . 81

2.2.5. Bitwise Operations . 83

2.3. Decoding Library . 86

2.3.1. Synchronisation and Search . 86

2.3.2. Error Correction and Detection . 95

2.3.3. Burst Operations . 106

2.3.4. Pre-Processing . 109

2.3.4.1. Bit-Level Pre-Processing . 109

2.3.4.2. Symbol-Level Pre-Processing . 110

2.3.4.3. Utilities . 111

2.3.5. Alphabets . 111

2.3.6. Utilities . 120

2.3.7. File Output Helpers . 131

2.3.8. Bit Formatting . 132

2.3.9. Miscellaneous . 133

2.4. Miscellaneous . 134

3. Porting Existing DDL Decoders to pyDDL . 138

3.1. Automatic Conversion . 138

3.2. Quick Reference . 138

3.2.1. Basic Programming and Language Elements . 140

3.2.2. Pre-Processing Functions . 140

3.2.3. Search Functions . 141

3.2.4. Read Functions . 141

3.2.5. Read Pointer Functions . 142

ii © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

3.2.6. Fractionize Frame . 142

3.2.7. Reformat and Process Data Packages . 143

3.2.8. Arrays . 143

3.2.9. Analyzing, Code Checking and FEC . 144

3.2.10. Universal Decoding of Block Codes . 144

3.2.11. Functions for Bit Manipulation . 145

3.2.12. Operators . 146

3.2.13. Branch Commands . 147

3.2.14. Output Functions . 147

3.2.15. System Functions . 148

3.2.16. System Variables . 148

3.2.17. Symbol Tables . 149

3.2.18. Commands to Control Demodulator Parameters . 149

3.2.19. Knowledge-Base Demodulator Settings . 149

3.2.20. Special Commands for Morse Post-Processing . 150

3.2.21. Measurement Functions . 150

3.2.22. External Program Control and Interfacing . 150

3.2.23. Dynamic Link Libraries . 151

3.2.24. CVSD Speech Decoding . 151

3.2.25. Special Commands for Data Base Support . 151

3.2.26. Soft Decision Decoding . 151

3.3. Migration Guide . 152

3.3.1. Search pattern . 152

3.3.2. Performing Tasks on Decoder Exit . 152

3.3.3. Using Golay Block Decoder . 152

3.3.4. Using Hamming Block Decoder . 153

3.3.5. Converting Alphabets . 153

A. Support . 156

List of Figures . 157

List of Tables . 158

© 2023 PROCITEC GmbH iii

PYTHON DECODER DEVELOPMENT Analysis Suite

1. Manual

1.1. Overview

Modem definitions used in the Automatic Production Channel (APC) are comprised of a demodulator and
a decoder. While signal demodulation can often be achieved by using a generic demodulator, the subse-
quent decoding is usually highly specific and requires more logic.

The Python programming language provides an easy to learn way to describe the decoding process pro-
grammatically. It provides structural elements for e.g. conditional execution and a rich set of builtin data
types. Code can be organized into functions and classes, which can also be imported from other files.

The functions and classes described in this document provide functionality specific for developing de-
coders in Python:

• an interface to communicate with the APC at runtime to retrieve input data, set the modem state
or output the decoding result as text or binary data. For development purposes there is a stan-

dalone runtime, that allows feeding recorded data from .rec-file into the decoder and provides the
same interface as an APC.

• a data type for processing bits and associated metadata. This includes e.g. timestamps, demod-
ulation quality, soft bits.

• a library of commonly used decoding functions including pattern search, error correction codes,
etc.

This is an overview of the aforementioned architecture

As shown in the diagram a Python Decoder may be split into multiple Python modules. Each module cor-
responds to a .py-file and may contain only a part of a decoder or functions that are shared between
different decoders. To distinguish between decoder and support modules, the decoder main files have to
end in _dec.py.

Decoders and their support modules can also be packaged into a portable decoder package file with the
suffix _dec.pkg.

© 2023 PROCITEC GmbH 1 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

1.2. Tutorial for Writing Decoders

In this tutorial a decoder for HNG-FEC is discussed. The focus here is not on the protocol itself but on how
the decoder is implemented in Python and pyDDL. In short, HNG-FEC is full duplex transmission system
using FSK with 100.05 Bd and 500 Hz shift formerly used by the Ministry of Foreign Affairs in Hungary. It
uses an ITA-2 alphabet encoded in 15 bit codewords and interleaving. Received words can be decoded by
finding the closest matching valid codeword.

The decoder receives a stream of bits from the Decoder Runtime and passes back the decoded message.
The beginning of codewords and interleaving blocks must first be identified to then extract the transmitted
characters. During execution the decoder also reports to the runtime, when synchronisation was achieved
and when it is lost.

For the purposes of this tutorial the implementation of the decoder is split into two modules. That means
we have two files which make up the decoder:

• the main decoder module, hng_fec_dec.py and

• a support module, hng_fec_alphabet.py.

Neither of these is too big in size not be be merged into a single file. However, it shows the potential of
splitting large code files and sharing of code between decoders.

1.2.1. Support Module hng_fec_alphabet.py

In this module the mapping between codewords and characters is defined using the class Alphabet from
procitec.decoding. For this type of encoding there are actually two different characters per infoword and
therefore also per codeword. The resulting character is selected by special codewords that signal the level
to be used for the following words.

1 from procitec.decoding import Alphabet, LEVEL as L

2

3 ita2_coded = Alphabet(

4 {

5 0b011111010010001: ["", ""],

6 0b100100011000001: ["T", "5"],

7 0b000010110111001: ["", ""], # CR

8 0b111001111101001: ["O", "9"],

9 0b101010101010101: [" ", " "],

10 0b010001100000101: ["H", "<>"],

11 0b110111001111101: ["N", ","],

12 0b001100000101101: ["M", "."],

13 0b000101101110011: ["\n", "\n"],

14 0b111110100100011: ["L", ")"],

15 0b011000001011011: ["R", "4"],

16 0b100011000001011: ["G", "&"],

17 0b110000010110111: ["I", "8"],

18 0b001011011100111: ["P", "0"],

19 0b101101110011111: ["C", ":"],

20 0b010110111001111: ["V", "="],

21 0b101001000110000: ["E", "3"],

22 0b010010001100000: ["Z", "+"],

23 0b110100100011000: ["D", "<WRU>"],

24 0b001111101001000: ["B", "?"],

25 0b011100111110100: ["S", "'"],

26 0b100111110100100: ["Y", "6"],

27 0b000001011011100: ["F", "<>"],

(continues on next page)

2 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

(continued from previous page)

28 0b111010010001100: ["X", "/"],

29 0b110011111010010: ["A", "-"],

30 0b001000110000010: ["W", "2"],

31 0b101110011111010: ["J", "<BEL>"],

32 0b010101010101010: [L[1], L[1]],

33 0b000110000010110: ["U", "7"],

34 0b111101001000110: ["Q", "1"],

35 0b011011100111110: ["K", "("],

36 0b100000101101110: [L[0], L[0]],

37 0b110010011001011: ["<P>", "<P>"],

38 0b001101100110100: ["<N>", "<N>"],

39 },

40 codeword_length=15,

41 replacement_character="_",

42 msb_first=False,

43)

First, the required objects are imported. Aside from the Alphabet class and the LEVEL object is required to
mark codewords as level changing.

The Alphabet instance ita2_coded is created by passing a mapping and some additional parameters. The
mapping uses int literals in binary notation for the codewords and a list of characters, one per level, as
values. Here, there are two levels. For example line 6 means codeword 0b100100011000001 maps to the
value "T" for level 0 and to "5" in level 1.

Lines 32 and 36 contain the special, level-changing codewords described above. Instead of single charac-
ter str, the values L[0] or L[1] are passed to signify a level-change 0 or 1, respectively.

1.2.2. Main Decoder Module hng_fec_dec.py

This module is were the actual decoding is performed. There are several ways how the code can be struc-
tured: a linear script, a set of functions or classes or a mix thereof. The runtime supports all of these and
it usually depends on personal preference and the complexity of the protocol which is most suitable. It
is expected, however, to try to continue execution until there is no more data to be processed. Once the
module terminates, the production is stopped.

Most decoder implement a main entry point in form of a function or instance method. That entry point trig-
gers synchronisation and decoding and may return on failure or loss of synchronisation. By looping over
that call the decoding routine is then restarted to process potentially following parts of a transmission.

1.2.2.1. Preface and General Structure

In this decoder the main module has three sections: first are imports and globals, then there is a main()

function, followed by some commands to setup control and data flow:

1 import procitec.decoding as ddl

2

3 from hng_fec_alphabet import ita2_coded

4

5 ita2_decoder = ddl.AlphabetDecoder(ita2_coded, initial_level=0, force_level=False)

6

7

8 def main():

9 """synchronize and decode"""

(continues on next page)

© 2023 PROCITEC GmbH 3 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

(continued from previous page)

10 ... # see below

11

12

13 if __name__ == "__decoder__":

14 apc = ddl.runtime.APC(decoder_version="2.0.0")

15 while True:

16 main()

In the first section, lines 1 to 5, the decoding module is imported using the abbreviated name ddl. Instead
of listing all the required objects on the import, it is oftentimes easier to import the module as a whole and
access object with the “.” operator.

Next is the import of the Alphabet ita2_coded from our support module shown above. From this an in-
stance of AlphabetDecoder is created. An Alphabet itself is stateless. It defines the structure and prop-
erties of the code. The decoding of a stream of codewords with multiple levels requires not only finding
the matching entry in ita2_coded, but also keeping track of the current level. This can, of course, be
done manually. However, it is more convenient to use built-in functionality: AlphabetDecoder adds the
described stateful decoding capabilities.

The details of the function main() are discussed below. For now, note the code at the end, starting from
line 13: This is where an interface to the runtime, the apc object, is obtained by calling ddl.runtime.

APC(). Using the variable name apc here is not a requirement, but convention. The Automatic Production
Channel (APC) acts as host application for decoders and coordinates data flow between the data source,
the demodulator and the decoder.

The final two lines of code call the function main() in endless loop. Inside main() data is read from apc.

data until the production is terminated by the runtime. At this point the input stream is closed. However,
data may be read until the input buffers are drained. As soon as a BitStream call requests more bits
than available, an EndOfDataError is raised to terminate execution. Clean-up tasks can be performed by
placing a try ... except statement which catches EndOfDataError around the loop in line 15.

The if-clause in line 13, is not strictly required. It is, however, useful to switch behavior depending on
how the main module is used. All Python modules have a global variable __name__ containing their import
name (filename without suffix preceded by the parent package name, if any). The main module, however,
has the value "__main__" set as name instead as it is not being imported by another module, but acting
as the main script file.

Decoder modules are also main modules: it is were the decoder execution starts. But decoders are not
standalone Python programs or scripts. They require a host application, a runtime component to pro-
vide the data to be processed. The availability of the runtime is signaled with the main module name
"__decoder__". Using the if-clause enables the decoder the be run outside of the APC host-application
by the addition of an else-clause which may load the standalone runtime component to read data from
pre-recorded file or to run tests.

1.2.2.2. Decoder Main Function

In this section the content of the main() function is discussed. This is were the actual decoding operations
are performed:

1 def main():

2 """synchronize and decode"""

3 char_size = ita2_coded.codeword_length

4 bit_dist = 64 # interleaving

5 block_len = bit_dist * char_size

6

7 search_result = ddl.search_alphabet(apc.data, ita2_coded, repetitions=3,

(continues on next page)

4 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

(continued from previous page)

8 max_bit_errors=0, max_offset=500,

9 interleaving=(bit_dist, char_size))

10 if search_result:

11 apc.modem.ident()

12 else:

13 apc.modem.no_sync()

14 return

15

16 ita2_decoder.reset()

17 while True:

18 block = apc.data.peek(block_len)

19 codewords = ddl.extract_interleaved(block, bit_dist=bit_dist,

20 char_dist=char_size, char_size=char_size,

21 char_ix=0, block_len=block_len)

22 apc.data.consume(codewords.size)

23

24 if dec_result := ita2_decoder.decode(codewords, max_errors=3):

25 apc.modem.sync()

26 apc.output.text1(dec_result)

27 else:

28 apc.modem.no_sync()

29 return

Initially, there is an unknown offset between the bits in apc.data and the start of the next codeword and
interleaving block. Only after this offset is found, deinterleaving and decoding of the resulting codewords
can be performed. In many cases transmissions include special bit sequences, or preambles, to mark the
start of interleaving blocks. Here we simply brute-force search the incoming bits for a sequence of valid
interleaved symbols from our alphabet ita2_coded. This method allows synchronisation even if the start
of the transmission is missing.

First, the interleaving parameters char_size, bit_dist and block_len are defined as local variables. This
information is not only required for the synchronisation, but also for subsequent the data extraction. The
actual search for the offset could be implemented using a loop over possible offsets, the deinterleaving
index sequence followed by checking the resulting codewords against those in ita2_coded. This is a pretty
common task and therefore already implemented as part of the Decoding Library.

The function search_alphabet() is called in line 7. The parameters passed are

• apc.data, the BitStream to be searched,

• ita2_coded, the alphabet to be found,

• repetitions, the number of valid codewords required for a result to be considered successful

• max_bit_errors, the number of bit errors tolerated in a successful search

• max_offset, when to stop searching and report failure

• interleaving, parameters to re-order bits before comparison

Details on these parameters and their meaning can be found in the documentation of search_alphabet().
The important aspect here is that this function will read and consume bits from apc.data until it either
finds valid codewords or max_offset is reached. That second condition is quite important as it terminates
the search to allow the decoder to report its status: no synchronisation (yet).

The object returned by search_alphabet() is stored as search_result and is an instance of SearchRe-
sult. This object contains information about the result: success or failure as well as, in case of success,
the offset and number of errors in the found pattern. For convenience, it may be used as a boolean, return-
ing the value of SearchResult.found via __bool__().

© 2023 PROCITEC GmbH 5 of 158

procitec.decoding

Analysis Suite PYTHON DECODER DEVELOPMENT

This is used in line 10: in case of a successful search apc.modem.ident() is called to report that trans-
mission has been identified as HNG-FEC. Otherwise, if no valid sequence of codewords was found within
max_offset, the decoder informs the runtime about this by calling apc.modem.no_sync(). It then returns
from main(), only to be called again to search the next chunk of bits for valid codewords.

Next is the decoding phase: first the ita2_decoder object is reset to clear internal state (see AlphabetDecoder.
reset() for details). Note, an alternative to using a global object for AlphabetDecoder and calling reset()

would be to create a fresh instance each time this point is reached. Finally, the loop starting in line 17 reads
consecutive interleaving blocks from apc.data and decodes them:

• line 18: here apc.data.peek() is used instead of read(). The difference is that the number of re-
quested bits, block_len, are returned as a BitBuffer, but the current position within the stream is
not modified. Calling that function again would return the same data. Only after calling apc.data.

consume() in line 22 the position is advanced.

• line 19: ddl.extract_interleaved() is called, to perform deinterleaving on the current block of
bits. The interleaving parameters defined earlier are passed and the result is returned as BitBuffer
object and stored in codewords.

• line 24: the sequence of codewords is processed in the AlphabetDecoder instance ita2_decoder

which returns a DecodeAlphabetResult, dec_result. This object contains the extracted sequence of
characters, the number of potential codeword errors and the total number of faults. Its __bool__()

operator checks if all codewords could be decoded.

• line 25: codewords was decoded successfully, which is reported via apc.modem.sync(). The de-
coded part of the message is sent to the default output channel text1 using apc.output.text1().
Note, DecodeAlphabetResult defines __str__()which returns dec_result.message if used in a str-
context.

• line 28: decoding failed, the decoder state is changed back to no_sync(). Then main() returns, gets
called again and tries to re-acquire synchronisation.

1.2.2.3. Code Structure Alternatives

The example code shown above uses a single function to perform synchronisation and decoding. These
two operations could be extracted into separate functions, leaving only the higher-level code in main():

1 def main():

2 """synchronize and decode"""

3 if find_coded_ita2_alphabet(apc.data):

4 apc.modem.ident()

5 ita2_decoder.reset()

6 while dec_result := read_and_decode(apc.data):

7 apc.modem.sync()

8 apc.output.text1(dec_result)

9 apc.modem.no_sync()

10

11

12 def find_coded_ita2_alphabet(stream):

13 return ddl.search_alphabet(stream, ita2_coded, repetitions=3,

14 max_bit_errors=0, max_offset=500,

15 interleaving=(64, 15))

16

17

18 def read_and_decode(stream):

19 block = stream.peek(block_len)

20 codewords = ddl.extract_interleaved(block, bit_dist=64,

21 char_dist=15, char_size=15,

(continues on next page)

6 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

(continued from previous page)

22 char_ix=0, block_len=64 * 15)

23 stream.consume(codewords.size)

24 return ita2_decoder.decode(codewords, max_errors=3)

Such a split is useful if the two operations are more complex as it separates and abstracts them cleanly
and avoids deeply nested structures. Here only the required parts of the runtime, namely apc.data was
passed to the sub-functions. The object apc itself is, however, defined in the module global scope and
therefore accessible everywhere.

For other protocols a pure function-based structure may not work well. Oftentimes parameters and state
need to be preserved and passed, e.g. the decoding function can depend on parameters determined in the
synchronisation function. Here a class-based approach can be used:

1 class HNGFEC:

2 def __init__(self):

3 self.some_state = ...

4

5 def find_coded_ita2_alphabet(stream):

6 ...

7 self.some_state = "found"

8

9

10 def read_and_decode(stream):

11 ...

12 if self.some_state == "found":

13 ...

The main() function itself can either remain a free function that creates an instance of HNGFEC or be part of
the class itself. For complex protocols a set of classes may be used to handle different modes or messages
types separately – each keeping the current state localized within each instance.

1.3. Decoder Development Using Spyder

Development of decoders is done in an Integrated Development Environment (IDE) based on Spyder. Use
the Extras → Launch Decoder Development (pyDDL) menu entry in go2DECODE or the start menu of
your operating system to start the IDE. The main window of the IDE is shown in Fig. 1.

For a tutorial how to write a decoder see Tutorial for Writing Decoders .

1.3.1. Creating and Using a New Decoder

To create a new decoder, use the File → New file... menu entry, press Ctrl+N or use the New file

button in the toolbar. Save the decoder by using the File → Save menu entry, pressing Ctrl+S or using
the Save file button in the toolbar. The file can be be saved in any folder. The name of the main file of
the decoder must end in _dec. Additional modules for a decoder (see Tutorial for Writing Decoders) can
be created in the same manner. They must be placed alongside the decoder’s main file.

A decoder package must be created in order to use the decoder in other PROCITEC products. A decoder
package bundles all modules of a decoder into a single file with the file extension .pkg. This simplifies
the distribution of decoders. Use the File → Export decoder package menu entry to create a decoder
package; it will be saved in in <user directory>/go2SIGNALS/go2DECODE <version>/decoders. The de-
coder can now be used in go2DECODE by selecting it from the list of decoders (see chapter 4.14.4 in the

go2DECODE manual). Decoder packages are marked with the icon.

© 2023 PROCITEC GmbH 7 of 158

https://www.spyder-ide.org/

Analysis Suite PYTHON DECODER DEVELOPMENT

Figure 1: Spyder main window

Note: Changes or enhancements to the Decoder Description Language are made with backward compat-
ibility in mind. Thus, once created decoder packages (pkg) should still work when the go2signals software
is upgraded to a newer version.

However, there still might be edge cases where backward compatibility is not possible (study release notes
and manual carefully) or there are new DDL or Python commands which you want to apply in your decoder.
Then it is recommeded to recreate the decoder package file.

1.3.2. Editing an Existing Decoder

Use the Edit descripton button in go2DECODE (see chapter 4.14.4 in the go2DECODE manual) to edit
an existing decoder package. The decoder will be searched first in the user directory and, if not found, in
the installation directory of go2DECODE1. Decoder packages from the go2DECODE installation can only be
opened if they are not subject to license restrictions.

The package will be extracted to <user directory>/go2SIGNALS/Analysis Suite <version>. This will
show a dialog as depicted in Fig. 2 if the package has been opened before. Overwriting existing files is only
safe if Export decoder package has been used in the previous edit session. If in doubt, abort by using the
No button in the dialog and backup existing files (or do so before using the Yes button in the dialog).

You can now edit the decoder.

1 Please note that this search order also applies to the usage of decoders by the APC: If a decoder with the same name exists both
in the user directory and the installation directory of go2DECODE, the one in the user directory will be used.

8 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

Figure 2: Dialog shown upon opening an existing decoder

Note: Once done, use the File → Export decoder package menu entry to update the decoder pack-
age.

Instead of using the Edit descripton button in go2DECODE, you can and use the File → Open... menu
entry in the IDE to open a decoder (_dec.py file) or a decoder package (_pkg.py file) from any directory.
Alternatively press Ctrl+O or use the Open file toolbar button.

1.3.3. Running a Decoder

By running a decoder you can see its output and verify whether the behaviour meets expectations. Run a
decoder by using the Run → Run menu entry, pressing F5 or using the Run button in the toolbar. You can
also use the Run last file action (F6) displayed next to the Run action. This will execute the previous
run/debug action regardless which file is currently open. This is especially useful while a module used in
a decoder is being edited.

The very first time a decoder is started a configuration dialog appears (see Fig. 3). The dialog can be
opened at any time using the Run → Configuration per file... menu entry, pressing Ctrl+F6 or using
the Run settings button in the toolbar (next to the Run button). Settings configured in the dialog are saved
individually for each decoder and recalled the next time a decoder is executed.

There are two different execution modes: Decoder only and Signal processing and decoder. They are
explained in Execution Mode Decoder only and Execution Mode Signal processing and decoder respec-
tively. For details about “decoder parameters”, see Decoder Parameters .

© 2023 PROCITEC GmbH 9 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

Confirm the settings and run the decoder by pressing the Run button in the dialog. The decoder’s out-
put appears in Decoder Output in the upper right area of Spyder’s window. See Examining and Saving
Decoder’s Output for details.

The IDE can also be used to execute “conventional” Python code by selecting Run generic Python script

instead of Run Decoder Development at the top of the configuration dialog (see Fig. 3).

Figure 3: Configuration dialog for decoder execution

1.3.3.1. Execution Mode Decoder only

Decoder only is the execution mode selected by default. The mode is best suited for the development
and testing of new decoders and for generic decoder development and testing. Only the decoder’s code is
executed, i.e. the execution is not affected by the APC’s signal processing and runtime behaviour.

10 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

The input for the decoder is a so called .rec file which contains the bit stream generated by a demodulator.
Alongside the raw bit stream other information such as burst information, timestamps and soft symbols
are saved. Such a file can be generated using the Record demodulator output option in go2DECODE,
see chapter 4.6.5 in the go2DECODE manual. Alternatively, use the Execution Mode Signal processing and
decoder and set the option Save demodulator output.

You must select an input .rec file for the decoder. Do so by providing a file path in the Decoder input

input line or invoke the file browser using the button right to the input line.

The Decoder only execution mode has the option to automatically start the debugger when an error oc-
curs. This allows the inspection of variables (see Examining variable values) at the point the error occured.
Check the option Directly enter debugging when errors appear in the configuration dialog (see Fig.
3) to make use of this feature.

1.3.3.2. Execution Mode Signal processing and decoder

The mode Signal processing and decoder is mainly intended to test and debug the behaviour of de-
coders as they are executed inside the APC. Especially the behaviour and interaction with other modems
(decoders) in Modem Recognition (see Chapter 4.2.4 in the go2DECODE manual) is of interest.

The input file is a signal (.wav) file recorded by a receiver or a sound card, or generated synthetically (e.g.
by SOMO). It is subject to the usual signal processing in the APC where eventually the bit stream generated
by a demodulator is passed to a decoder.

The following settings must be defined to run a decoder in the Signal processing and decoder mode;
they resemble settings used in go2DECODE:

• Modem(s): Select the modem (.ver) or modem list (.cmf) file to be used for the execution of the
decoder. Provide a file path in the input line or select a file by invoking the file browser using the
button right to the input line. .ver/.cmf files can be created in go2DECODE, see chapters 4.7 and 4.8
in the manual. Make sure that the decoder is in fact used inside the .ver/.cmf file.

• Signal file: A .wav containing the signal to be processed. Provide a file path in the input line or
select a file by invoking the file browser using the button right to the input line.

• Modem: A modem list file (.cmf file) may contain multiple modems. The modem to be executed can be
selected here. Note that only modems with a matching name are displayed, i.e. at least one modem
must use the decoder currently being edited.

• Processing mode: Either Production or Modem recognition; see chapter 4.2.4 in the go2DECODE
manual for details.

• Signal search mode: Define the absolute frequency location of the signal of interest in the input
file: See chapter 4.14.2.2 in the go2DECODE manual for details on the difference between Nominal

frequency and Frequency range.

Note: You must provide the absolute frequency location inside the file.

• Save demodulator output: Set this setting to save the demodulator output to a .rec file. These
files can be used in the Execution Mode Decoder only .

This option requires the general option Enable file output to be enabled.

© 2023 PROCITEC GmbH 11 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

1.3.3.3. Decoder Parameters

Decoders may receive and make use of externally set parameters. They are set when the decoder is
started and can be used to configure the behaviour of the decoder. Inside the decoder, the parameters are
accessible via apc.parameters.

Decoder parameters are set and modified in dialog windows described below. The parameters are saved
individually per decoder, and per modem file and modem in case of Execution Mode Signal processing and
decoder .

Setting and modifying decoder parameters in Execution Mode Decoder only is always possible by using
the Show Decoder parameters button in the configuration dialog (Fig. 3). This brings up a dialog as shown
in Fig. 4. Use the buttons in the toolbar to add and remove entries (multiple entries can be selected for
deletion). Double click on a column to modify the corresponding value.

Figure 4: Dialog for decoder parameters in Execution Mode Decoder only

Setting and modifying decoder parameters in Execution Mode Signal processing and decoder is only pos-
sible if decoder parameters have been defined in the modem file. See chapter 4.14.4.5 of the go2DECODE
manual for details. If decoder parameters are available, a dialog (Fig. 5) to modify them is brought by us-
ing the Show Decoder parameters button. Hover over GUI elements in the dialog to show tooltips about
the corresponding decoder parameter. Modified values – those differing from default values defined in the
modem file – are marked bold. Restore Defaults restores all values to defaults from the modem file.

1.3.4. Examining and Saving Decoder’s Output

The decoder’s output will appear in Decoder Output in the upper right corner of Spyder’s window (see Fig.
1 and Fig. 6). By default the output of all output channels declared by the decoder is shown. There is also
an additional tab containing the raw XML output. This can be used to examine the output of apc.output.
xml.

12 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

Figure 5: Dialog for decoder parameters in Execution Mode Signal processing and decoder

Please note that output on the notify channel is handled in a special way: It is displayed on all output tabs
in gray color (this also applies to other PROCITEC products), unless output of the channel is disabled via
Output Settings .

To find some text in the output, use the shortcut for Find text (the same one as in the editor; by default
Ctrl+F).

Just below the decoder’s output two additional lines with information are displayed. The first line (text
(no status output) in Fig. 6) displays the decoder’s output to the status channel. This special output
channel can be used to output status messages. For example, in a point-to-point communication, it might
be of interest to display the addresses of the current communication partners. These status messages are
also displayed in a special manner in other PROCITEC products.

Below the status output of the decoder, the following information about its execution state is displayed:

• The run status. For decoders in execution mode Decoder only the run status is always Running....
With the execution mode Signal processing and decoder the run status may be any of Search ongo-

ing..., Search finished..., Production ongoing... or Production finished.... These values
reflect the current status of the APC’s signal and decoder processing.

• The current position of the decoder’s input bitstream (apc.data.position). This is only available
when debugging a decoder. Note: The value is not updated while the decoder is running (i.e. after
using Continue). It is only updated when executing the decoder stepwise and when a breakpoint is
hit.

• The progress of the decoder execution. This is approximate only, especially so in the Signal pro-

cessing and decoder mode. Moreover, a rewind of the input stream or the demodulator is not re-
flected.

The run status and the position of the input bitstream is also displayed in the statusbar of Spyder’s window
(see Fig. 9).

© 2023 PROCITEC GmbH 13 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

Figure 6: Decoder output widget in the upper right corner of Spyder’s window. Note the special handling of output on
the notify channel: It is displayed on all output tabs in gray color.

The output channels to be shown can be selected by opening the Output Settings dialog (see Fig. 7).
Use the Show selected channels option and select the desired output channels. The list of channels is
updated every time the decoder is executed. Execute the decoder once if the list is empty.

The display of the raw XML output is controlled by the Show raw XML result setting.

The decoder’s output can be saved to files. Each output channel is saved into an individual file (UTF-8
encoded). To enable this feature, use the Save decoder output setting and select the output directory.

All settings made in the Output Settings dialog are saved individually for each decoder. They are recalled
when Spyder is restarted.

1.3.5. Debugging a Decoder

Debugging is the process of finding and fixing errors in program code. This is facilitated by being able to
halt the program’s execution at specific points in the code. These points are called breakpoints. There are
two ways to set or clear them:

• Use the Debug → Set/Clear breakpoint menu entry or press F12 to set/clear a breakpoint at the
current line in the file.

• Place the mouse to the right of a line number (shown in the left part of the code editor, see Fig. 8).
Use left mouse button to set/clear a breakpoint at that line.

Debugging can be started by using the Debug → Debug menu entry, pressing Ctrl+F5 or using the Debug

button in the toolbar. You can also use the Run last file action (F6) displayed next to the Run action.
This will execute the previous run/debug action regardless which file is currently open. This is especially
useful while a module used in a decoder is being edited.

The decoder will be started and will run until a breakpoint is hit. Note that the dialog for decoder execution
configuration appears if the decoder has not been run or debugged before (see Running a Decoder).

14 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

Figure 7: Configuration dialog for decoder output

Figure 8: Setting or clearing a breakpoint using the mouse; use left mouse button

© 2023 PROCITEC GmbH 15 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

Once a breakpoint is hit, see the Debug menu for available options to control further execution; they are
explained below. You can also use the corresponding keyboard shortcuts or buttons in the toolbar.

• Step (Ctrl+F10) executes the current line and goes to the next.

• Step into (Ctrl+F11): If the current line contains a function call (possibly nested ones), “jump” into
that function. This only works if the function’s definition (Python code) is available. Execution stops at
the point of the function’s definition. If the function is defined in an other file, that file will be opened.

• Step return (Ctrl+Shift+F10) execute the current function up to the point where it returns (the
return statement is not executed).

• Continue (Ctrl+F12) executes code until the next breakpoint is hit.

• Stop (Ctrl+Shift+F12) stops debugging.

You can use the IPython console in the lower right corner of Spyder’s window to execute Python expres-
sions when code execution is halted (see Fig. 9). This also includes the manipulation of variables. The
command line can also be used to control the debugger; see Debugger Commands for details. Debugger
commands must be prefixed with an exclamation mark (!).

Figure 9: A running debug session. Production ongoing and data position in the statusbar is described in Examin-
ing and Saving Decoder’s Output .

1.3.5.1. Examining variable values

There a multiple ways to examine variables when code execution is halted:

16 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.7/library/pdb.html#debugger-commands

PYTHON DECODER DEVELOPMENT Analysis Suite

The Variable explorer in the upper right corner of Spyder’s window shows all local variables (see Fig.
9)2. If you want to see only a specific set of variables, you can either use the IPython console or the
Watchlist described hereafter.

The IPython console console in the lower right corner of Spyder’s window can be used to print variable
values. For Python’s built-in data types the print() can be left out, i.e. it is sufficient to enter the variable’s
name only to view its value. This may apply to other types as well. If the displayed value is not “human
readable”, enclose the expression in print() or str().

The Watchlist in the upper right corner of Spyder’s window can be used to automatically execute Python
expressions, similarly to the console (see Fig. 10). The “stringified” (see str) result of the statement is dis-
played in the Value column whenever code execution is halted. Errors during the execution of expressions
are denoted by <exception name> in the Value column; the full error message is displayed in the tooltip
of the Value column.

Watchlist entries can be added, removed and modified by using one the following ways:

• Use the toolbar buttons above the table to add and remove expressions.

• Use the right-click context menu inside the table to add and remove expressions.

• Use the Delete key to removed selected expressions.

• You can select multiple entries for removal.

• Use a double click below the last row in the table to add an expression.

• Use a double click onto an existing expression to modify it.

• Drag & Drop text into the table. Each line of the dropped text will be added as an expression to the
list.

• Rearrange entries by using Drag & Drop. This is only possible if a single entry is selected.

The value of an expression can by copied using one of the folling ways:

• Select the value (click in the second column in the desired row) and use Ctrl+C shortcut.

• Use the Copy value action in the right-click context menu.

Note that the console and the watchlist can be used to execute any Python expression, including expres-
sions with side effects. These side effects will affect subsequent code execution.

1.3.5.2. Graphical Display of a BitBuffer

The content of BitBuffer can be displayed in a graphical manner (see Fig. 11 and Fig. 12). To do so,
perform a double click on a BitBuffer variable in the Variable explorer or use the Plot entry of the
right click context menu. The display has the following features:

• Zoom by rotating the mouse wheel.

• The first N bits in the BitBuffer can be ignored (display offset). Modify the first input field at the top
of the display.

• The number of columns can be modified in the second input field.

• The display style can be selected in the middle drop-down list. The first symbol denotes the symbol
used for a 0 bit, the second symbol the symbol for a 1 bit.

• If available, display of burst marks can be enabled. Bits which are a burst start or end are highlighted
with a green color. Hover over such a bit to display a tooltip with more information about the burst
mark. (See Fig. 12.)

2 The Object explorer provided by the Variable explorer has a known issue. See here for details.

© 2023 PROCITEC GmbH 17 of 158

https://docs.python.org/3.11/library/stdtypes.html#str

Analysis Suite PYTHON DECODER DEVELOPMENT

Figure 10: Watchlist plugin. Syntax errors are displayed in red. A NameError either indicates that a variable is not
defined yet or that it is misspelled.

• If available, display of quality of bits can be enabled. The quality of bits is displayed in grayscale. A
darker color indicates a better quality. (See Fig. 12.)

• A row-wise selection can be performed by clicking onto a bit and dragging the mouse. Press and
hold Shift before the click and drag action in order to make a block-wise selection. Hovering over
a selection displays a tooltip with information about the selection (see Fig. 11). A right click context
menu allows copying of the selected bits into the clipboard.

1.3.6. Profiling a Decoder

Profiling is the process of measuring a program’s performance. The collected information aids optimization
of programs by revealing bottlenecks (long-running portions of code). These bottlenecks may be possibly
optimized to run faster.

The decoder development environment includes a profiler which measures how often individual lines of
code are executed and the amount of time the execution took. To run the line profiler, use the Run → Run

line profiler menu entry.

There are two requirements:

• The decoder must be configured for execution in Decoder only mode (see Running a Decoder).

• Each function to be profiled must be marked with a decorator specific to the line profiler. To do so,
add @profile just before the function definition:

@profile

def func():

pass

Results are presented in a tabular manner for each function (Fig. 13). They can by sorted by the available
columns:

• Line #: Line number of code

18 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/glossary.html#term-decorator

PYTHON DECODER DEVELOPMENT Analysis Suite

Figure 11: Graphical display of a BitBuffer

Figure 12: Graphical display of a BitBuffer

© 2023 PROCITEC GmbH 19 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

• Hits: Number of times the line has been executed

• Time (ms): The total amount of time execution of the line took, in millisecond

• Per hit (ms): Average execution time of the line (Time (ms) divided by Hits), in millisecond

• % Time: Time (ms) relative to the total execution time of the function. The total execution time of
the function is displayed in the header of each function entry. Entries with a high % Time have a
background with a strong color, whereas entries with a low % Time use a pale color.

Figure 13: Example output of the line profiler

1.3.7. Known Spyder Issues

1.3.7.1. OpenGL Error

Starting Spyder may fail due to an OpenGL error as shown in Fig. 14 or the opened window stays black.
The error mainly occurs on Windows systems and is related to graphic card drivers. To resolve the error
perform the following steps:

• Open the file <user directory>/AppData/Roaming/procitec/spyder/config/spyder.ini. Note:
Disable hiding of system directories in the options of Windows Explorer.

• Search for the line starting with opengl =

20 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

• Change the value after the equal sign from automatic to one of the following values (whichever
works):

– gles

– desktop

– software

Figure 14: OpenGL error

1.3.7.2. Object Explorer

The Variable explorer provides an Object explorer which may be accessed using the right-click con-
text menu of a variable. The Object explorer is also opened upon a double click on a variable (unless its
type is a built-in Python type or a numpy type). The Object explorer may fail to open displaying an error as
in Fig. 15. Additionally, the error message TypeError: cannot pickle '...' object will be displayed
in the IPython console.

Unfortunately, the Object explorer does not support every possible data type. This applies to almost
every type from the procitec.decoding module. If a variable has such a type, or if it is an instance of a
class using such types (as an attribute or inside a method), the Object explorer will not work. However,
you can always use the IPython console and the Watchlist to access attributes of such class instances;
see Examining variable values .

1.4. Customizing Python environments

Like any executable written in Python, pyDDL decoders inside applications like go2DECODE, go2MONITOR
or Spyder utilize Python modules and/or packages for decoding execution. Depending on the application,
different modules and packages are present in the respective Python environments. It’s possible to add
modules or packages to these environments to individually extend the decoders functionalities.

© 2023 PROCITEC GmbH 21 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

Figure 15: Error displayed by the Object explorer for unsupported types

However, the path in which the custom modules/packages need to be installed into are application depen-
dent.

1.4.1. Adding new packages

To install additional Python packages it is recommended to use the command line tool pip, the Package
Installer for Python. One can install additional Python packages from the Python Package Index site if a
working internet connection exists with

python -m pip install insert_package_name_here

The command should be carried out in a console window with administrative privileges as we need write
access to the installation folder (for an alternative see Non-priviliged package installation in Spyder). Here
it is important to call the python executable which is in the respective installation folder.

Spyder Decoder Development Environment

Windows: C:\Program Files\procitec\analysis-suite\python
Linux: /opt/procitec/analysis-suite/python

go2Decode / go2Monitor

Windows: C:\Program Files\procitec\<go2APP>\python\bin\python
Linux: /opt/procitec/<go2APP>/python/bin/python

It is necessary to repeat the above steps for every go2signals application for which the additional Python
packages are needed.

Some Python packages consist of pure Python files and some contain, in addition, C/C++ libs. If the pack-
age maintainer does not provide a pre-compiled version of these libs for your specific platform then pip
will download source code and compile it locally. A C/C++ toolchain is then a pre-requisite. Otherwise, the
installation will fail.

To avoid downloading of source code packages it is possible to give pip an additional parameter –only-
binary

22 of 158 © 2023 PROCITEC GmbH

https://pypi.org/

PYTHON DECODER DEVELOPMENT Analysis Suite

python -m pip install --only-binary :all: insert_package_name_here

If there is no internet connection available pip allows to install a local distribution file. First download the
distribution file from a computer with an internet connection.

python -m pip download --only-binary :all: insert_package_name_here -d insert_download_

↪→folder_here

This will download the package and all of its dependencies in compressed wheel format (type .whl) and put
them in the specified downlaod folder, e.g. C:\tmp\downloads.

Then copy this folder to the destination computer which has no internet connection and install the package
there.

python -m pip install C:\tmp\downloads\insert_package_name_here.whl --find-links C:\tmp\

↪→downloads --no-index

1.4.2. Non-priviliged package installation in Spyder

During the development of a decoder in Spyder it might be necessary to install the packages first in a user
folder where no administrative privileges are needed. The installation should be carried out directly from
the IPython console within the Spyder IDE.

import pip

pip.main(['install', 'insert_package_name_here', '--user'])

This will install the insert_package_name_here package and its dependencies in a hidden user folder.

Windows: %APPDATA%Python\Python311\site-packages
Linux: ~/.local/lib/python3.11/site-packages

It is necessary to add this path to the PYTHONPATH in Spyder. Therefore, call Tools->PYTHONPATH man-
ager from its menu and add the respective path.

To install into a package into a specific folder, e.g. C:\users\username\my_decoder

import pip

pip.main(['install', 'insert_package_name_here', '--target', 'C:\\users\\username\\my_

↪→decoder'])

If the lcoal computer has no internet access and the packages were downloaded beforehand and put e.g.
in the folder C:\tmp\downloads

import pip

pip.main(['install', 'c:\\tmp\\downloads\\insert_package_name_here.whl','--find-links‘,

↪→'C:\\tmp\\downloads','--no-index','--user'])

Note: It is recommended to install the additional package directly into the same folder as the decoder.
Then the new module will be automatically found when imported and then be put into the decoder package
when the decoder is exported (if it is a pure Python package with no C/C++ libs). Otherwise this path must
be added to PYTHONPATH, too.

© 2023 PROCITEC GmbH 23 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

To get more help for pip type

python -m pip help install

or consult the pip homepage.

1.4.3. Decoder module/package inspection in Spyder

As stated above, depending on whether a decoder is executed within Spyder or go2DECODE/go2MONITOR,
the environment -and thus- Python modules/packages which are accessible from within the decoder dif-
fer. As a rule of thumb one can say that the Python environment within Spyder is more wide-ranging than
go2DECODE/go2MONITOR’s APC environment. This is due to the fact that Spyder is meant for develop-
ment. A broader variety of modules (e.g. for plotting, analyzing, etc. . .) is therefore in the developer’s
favour, whereas for mere decoding, these modules are uncalled-for.

If a developer packs a decoder file (.py file) and its modules/packages within Spyder into a decoder pack-
age (.pkg file) containing modules/packages not present in go2DECODE/go2MONITOR’s APC Python envi-
ronment, a warning will pop up listing the modules/packages in question as seen below:

Figure 16: Decoder module/package warning in Spyder

For the decoder to run in go2DECODE/go2MONITOR, the developer will have two options:

• Remove the eligible modules/packages from the decoder

or

• Add the eligible modules/packages to the respective Python environment as outlined above.

Note: Module/Package inspection also takes place in CLI version of the packager. If a warning as seen
above applies, the corresponding warning output will appear in the command line.

24 of 158 © 2023 PROCITEC GmbH

https://pip.pypa.io/en/stable/getting-started

PYTHON DECODER DEVELOPMENT Analysis Suite

1.5. Using DLLs/Shared Libraries

• Creating Shared Libraries

• Loading External Libraries

• Calling Function from Loaded Libraries

– Passing Scalar Values by Value and by Pointer

– Passing Arrays

– Passing an array of pointers (multidimensional arrays)

– Using Structures

– Retaining Independent States and Using Classes

• Using Libraries Created for Non-Python DDL

Python’s ctypes module provides a way to call functions in dynamic-link libraries (DLLs) (Microsoft Win-
dows) and shared libraries (Unix-like systems). This way you can incorporate existing third-party or your
own libraries for special commands or additional functions such as interfacing functions or decryption.

This section provides a guide for the creation of external libraries and the usage of the ctypes module.
For a full reference of the module see ctypes. All code examples presented hereafter can be found the
folder examples/decoder inside the installation folder of the application (testlib.cpp, userlib.h and
dlltest_dec.py).

1.5.1. Creating Shared Libraries

You can use a development system of your choice to create a shared library in C. In fact, you can use any
programming language as long as there is a way to generate a shared library with a C application binary
interface (ABI).

When using a C++ compiler you must prefix function declarations with extern "C". C++ features affecting
function declarations – templates, default arguments and overloading – can not be used. However, you
can call functions using these features inside a function prefixed with extern "C". This means that you
can not use C++ features in the interface of a function, but you can use C++ features inside the function.
Example:

#include <algorithm>

extern "C" int cpp_max(int a, int b)

{

return std::max(a, b);

}

When using the Microsoft Visual C++ (MSVC) compiler you must prefix function which are to be accessed
by ctypes by __declspec(dllexport). In order to ease platform-independent development the following
preprocessor macro can be used.

#ifdef _MSC_VER

#define LIB_EXPORT __declspec(dllexport)

#else

#define LIB_EXPORT

#endif

© 2023 PROCITEC GmbH 25 of 158

https://docs.python.org/3.11/library/ctypes.html#module-ctypes
https://docs.python.org/3.11/library/ctypes.html#module-ctypes

Analysis Suite PYTHON DECODER DEVELOPMENT

Use LIB_EXPORT as part of function declarations:

#include <algorithm>

extern "C" LIB_EXPORT int cpp_max(int a, int b)

{

return std::max(a, b);

}

1.5.2. Loading External Libraries

A shared library can be loaded by instantiating the CDLL class. As argument a full path to the library,
including system-specific portions, must be provided. We recommend the usage of the helper function
find_library() to write portable (system-independent) decoders which do not depend on an absolute
path; see find_library() for details.

>>> import ctypes

>>> from procitec.common import find_library

>>> lib = ctypes.CDLL(find_library("dlltest"))

1.5.3. Calling Function from Loaded Libraries

Functions from shared libraries are accessed as attributes of the CDLL instance, e.g.:

>>> result = lib.function_name(1, None) # pass an int and NULL pointer

Some Python data types can be passed directly as parameters in these functions calls. By default functions
are assumed to return the C type int. This means that often no further steps are required to call functions
after loading a library. However, we recommend to provide the required argument types and the return
type. This is done by settings the argtypes respectively the restype attribute of the function:

>>> # function expects an int and void* and returns a long

>>> lib.function_name.argtypes = [ctypes.c_int, ctypes.c_void_p]

>>> lib.function_name.restype = ctypes.c_long

Doing so protects against wrong argument types and enables conversions of arguments to correct types
if possible.

The following sections provide examples for calling of functions using the ctypes module.

1.5.3.1. Passing Scalar Values by Value and by Pointer

Assume the following C function

extern "C" LIB_EXPORT float simple(int a, float *b)

{

*b = *b - 1;

return a + *b;

}

where so called “fundamental data types” (int, short, float etc.) are passed by value and by pointer.
Passing values by pointer (also known as “by reference”) allows the manipulation of the corresponding
memory location. This works as expected when interfacing the function through the ctypes module.

The initialization of the function in Python is as follows

26 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/ctypes.html#ctypes.CDLL
https://docs.python.org/3.11/library/ctypes.html#ctypes.CDLL

PYTHON DECODER DEVELOPMENT Analysis Suite

>>> # function expects an int and float* and returns a float

>>> lib.simple.argtypes = [ctypes.c_int, ctypes.POINTER(ctypes.c_float)]

>>> lib.simple.restype = ctypes.c_float

Usage of ctypes.POINTER() indicates that the given type is passed by pointer. See fundamental data
types for a list of supported data types. Make sure that the ctypes and C data types match. This is
especially important for the types short, int, long and long long whose size is implementation defined
in C and C++.

The function can be invoked using the following code

>>> a = 10

>>> b = ctypes.c_float(1)

>>> result = lib.simple(a, ctypes.byref(b)) # or lib.simple(10, b)

>>> assert b.value == 0.0

>>> assert result == a

Python’s int data type can be passed directly assuming that the argument type in C is one of the possible
integer types in C. Passing values by pointer requires the creation of a ctypes type and usage of ctypes.
byref(). A function requiring a pointer argument – as set in argtypes – also accepts an object of the
pointed-to type. The required byref() conversion is applied automatically (see type conversions in ctypes
for details).

The modification of the pointed-to value in the C code works just as expected. To pass a NULL pointer to a
C function use None in Python (directly, calling ctypes.byref() is not required).

1.5.3.2. Passing Arrays

Assume the following C function

extern "C" LIB_EXPORT int sum(int *arr, size_t len)

{

int tmp = 0;

for (size_t i = 0; i < len; ++i)

{

tmp += arr[i];

arr[i] = 0;

}

return tmp;

}

The initialization of the function in Python is as follows

>>> lib.sum.argtypes = [ctypes.POINTER(ctypes.c_int), ctypes.c_size_t]

>>> lib.sum.restype = ctypes.c_int

The function can be invoked using the following code

>>> array = (ctypes.c_int * 30)()

>>> for i in range(len(array)):

>>> array[i] = i

>>> result = lib.sum(array, len(array))

>>> assert sum(range(len(array))) == result

>>> assert all([val == 0 for val in array])

© 2023 PROCITEC GmbH 27 of 158

https://docs.python.org/3.11/library/ctypes.html#ctypes.POINTER
https://docs.python.org/3/library/ctypes.html#ctypes-fundamental-data-types-2
https://docs.python.org/3/library/ctypes.html#ctypes-fundamental-data-types-2
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/ctypes.html#ctypes.byref
https://docs.python.org/3.11/library/ctypes.html#ctypes.byref
https://docs.python.org/3.11/library/ctypes.html#ctypes.byref
https://docs.python.org/3/library/ctypes.html#type-conversions
https://docs.python.org/3.11/library/ctypes.html#ctypes.byref

Analysis Suite PYTHON DECODER DEVELOPMENT

Array types in ctypes are created by multiplying a data type with a positive integer (which is the length
of the array). You must call the constructor of the resulting class to create an instance of the array type.
These instances can be passed to C functions. As in C you can pass an array to a function accepting a
pointer (see type conversions in ctypes for details).

Elements of ctypes arrays can be read written using the standard subscript access. Bound checks are
performed just like with an ordinary Python list or tuple.

If the C function always expects an array of a specific size, the corresponding type in argtypes should be
ctypes.<type> * length. This prevents passing of an array with wrong size.

1.5.3.3. Passing an array of pointers (multidimensional arrays)

Assume the following C function which depends on code from the previous section

extern "C" LIB_EXPORT int sum_arrays(int **arrays, size_t *array_size, size_t array_

↪→count)

{

int tmp = 0;

for (size_t i = 0; i < array_count; ++i)

tmp += sum(arrays[i], array_size[i]);

return tmp;

}

The initialization of the function in Python is as follows

>>> lib.sum_arrays.argtypes = [

>>> ctypes.POINTER(ctypes.POINTER(ctypes.c_int)),

>>> ctypes.POINTER(ctypes.c_size_t),

>>> ctypes.c_size_t,

>>>]

>>> lib.sum_arrays.restype = ctypes.c_int

In order to pass 2 arrays to the C function, first define an array which will hold pointers pointing to the first
element of the arrays:

>>> arrays = (ctypes.POINTER(ctypes.c_int) * 2)()

Initialize differently sized arrays:

>>> array0 = (ctypes.c_int * 30)()

>>> for i in range(len(array0)):

... array0[i] = i

...

>>> array1 = (ctypes.c_int * 10)()

>>> for i in range(len(array1)):

... array1[i] = i

...

Set array pointers:

>>> arrays[0] = array0

>>> arrays[1] = array1

Initialize the array which holds the lengths of the arrays passed to the function:

28 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3/library/ctypes.html#type-conversions
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#tuple

PYTHON DECODER DEVELOPMENT Analysis Suite

>>> arrays_len = (ctypes.c_size_t * len(arrays))()

>>> arrays_len[0] = len(array0)

>>> arrays_len[1] = len(array1)

Finally invoke the function by:

>>> result = lib.sum_arrays(arrays, arrays_len, 2)

>>> assert result == sum(range(10)) + sum(range(30))

>>> assert all([val == 0 for val in array0])

>>> assert all([val == 0 for val in array1])

1.5.3.4. Using Structures

Assume the following struct declaration

typedef struct

{

double x;

double y;

} vector_t;

The corresponding structure definition for ctypes is as follows

>>> class vector_t(ctypes.Structure):

>>> _fields_ = [("x", ctypes.c_double),

... ("y", ctypes.c_double)]

...

ctypes structures are defined by deriving from ctypes.Structure and defining the _fields_ attribute.
Each element in the list of _fields_ must be a 2-tuple containing the field name and the field type. The
field type can be any ctypes type.

Instances of structure types in Python are created by calling the constructor of the defined type. Passed ar-
guments are used to initialize the members of the structure in the same order as they appear in _fields_.
You can also pass keyword arguments (in any order) which will set the corresponding member. (These rules
correspond to the initialization rules for structures in C.) Fields of the structure can be read and modified
using attribute access.

>>> vec = vector_t(0, 1.0)

>>> print(vec.x, vec.y)

0.0 1.0

>>> vec = vector_t(y = 2.0, x = 1.0)

>>> vec.x = 3.0

>>> print(vec.x, vec.y)

3.0 2.0

As an example for the usage of structures in ctypes the following code is assumed

#include <cmath> // C++ compiler is assumed

extern "C" LIB_EXPORT double vector_length(vector_t vec)

{

return std::hypot(vec.x, vec.y); // requires a C++ compiler

}

(continues on next page)

© 2023 PROCITEC GmbH 29 of 158

https://docs.python.org/3.11/library/ctypes.html#ctypes.Structure
https://docs.python.org/3.11/library/ctypes.html#ctypes.Structure._fields_

Analysis Suite PYTHON DECODER DEVELOPMENT

(continued from previous page)

extern "C" LIB_EXPORT void reset_vector(vector_t* vec)

{

vec->x = 0.;

vec->y = 0.;

}

The initialization of the functions in Python is as follows

>>> lib.vector_length.argtypes = [vector_t]

>>> lib.vector_length.restype = ctypes.c_double

>>>

>>> lib.reset_vector.argtypes = [ctypes.POINTER(vector_t)]

>>> lib.reset_vector.restype = None

A return type of None indicates that the C function’s return type is void. The functions can be invoked as
shown in Passing Scalar Values by Value and by Pointer :

>>> vec = vector_t(1.0, 1.0)

>>> result = lib.vector_length(vec) # pass by value

>>> assert math.isclose(result, math.hypot(1.0, 1.0))

>>>

>>> lib.reset_vector(vec) # pass by pointer; byref() is applied automatically

>>> assert vec.x == 0.0 and vec.y == 0.0

A function requiring a pointer argument – as set in argtypes – also accepts an object of the pointed-to type.
The required byref() conversion is applied automatically (see type conversions in ctypes for details).

1.5.3.5. Retaining Independent States and Using Classes

When working with a shared library it may be necessary to retain a state (a data structure) which is passed
to different functions. Moreover, there may be a need to maintain multiple independent states, e.g. in order
to decrypt multiple independent data streams. The state variable is most likely a C struct or a C++ class

which must be initialized in some way.

A possible solution look as follows:

Create an initialization function which initializes the required data structure. If the data structure is a C++
class, the function should either return a void pointer to an instance of the class or the pointer should be
saved in a void ** passed as an argument. If the data structure is a C struct, you can use a pointer to
the struct type and the techniques presented in Using Structures .

An example using a void pointer:

extern "C" LIB_EXPORT void init(void** instance)

{

*instance = new MyClass;

}

/* or a function returning a pointer

extern "C" LIB_EXPORT void* init()

{

return new Data;

}

*/

The initialization of the function in Python is as follows

30 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/ctypes.html#ctypes.byref
https://docs.python.org/3/library/ctypes.html#type-conversions

PYTHON DECODER DEVELOPMENT Analysis Suite

>>> lib.init.argtypes = [ctypes.POINTER(ctypes.c_void_p)]

>>> lib.init.restype = None

>>> # or lib.init.restype = ctypes.c_void_p if the initialization function return a�
↪→pointer

The pointer created by the C function must be saved in a variable in Python

>>> instance_pointer = ctypes.c_void_p()

>>> lib.init(ctypes.byref(instance_pointer))

>>> # or instance_pointer = lib.init()

The instance pointer can now be passed to every function requiring access to the data structure. If the data
structure has been created using dynamic memory allocation (malloc() or new), you must also provide a
function to free the corresponding memory.

The technique presented above can be used to make use of classes even though only C can be used in
the interface of functions: For each member function you would like to access, create a function with the
required arguments. As an additional argument a void pointer pointing to an instance of the class must
be passed.

1.5.4. Using Libraries Created for Non-Python DDL

Non-Python Decoder Description Language (DDL) requires a specific function interface to make use of
shared libraries (see DDL Manual chapter 5.23):

#define MAX_PARA 30

#define ERR_TXT_LEN 256

extern "C" LIB_EXPORT int myFunc(int* piValue[MAX_PARA],

const int aiLen[MAX_PARA],

const VARTYPE_T eType[MAX_PARA],

char acErrText[ERR_TXT_LEN])

{

// ...

}

The initialization of the function in Python is as follows

>>> lib.myFunc.argtypes = [

... ctypes.POINTER(ctypes.c_int) * 30, # array of pointers to int

... ctypes.c_int * 30, # array of int (lengths of arrays above)

... ctypes.c_int * 30, # VARTYPE_T enum

... ctypes.c_char * 256, # array of char

...]

>>> lib.myFunc.restype = ctypes.c_int

For a complete example for the usage see the function test_myFunc, defined in dlltest_dec.py in the
folder examples/decoder inside the installation folder of the application.

1.6. Tools for testing, executing and packaging of decoders

For decoder development Spyder can be used to implement, execute and test a decoder with offline input
data. It is also possible to bundle all needed modules of a decoder into a single file called decoder package.
For information about using Spyder see Decoder Development Using Spyder .

© 2023 PROCITEC GmbH 31 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

Besides using Spyder, there are other ways to run a decoder or bundle them together into a decoder
package. This can be used for automatic testing and deployment of decoders.

In all cases the Python executable supplied by theSpyder Decoder Development Environment is required.
The executable can be found in the following places within the installation folder

• Windows: C:\Program Files\procitec\analysis-suite\python

• Linux: /opt/procitec/analysis-suite/python

1.6.1. Executing a decoder

There are two ways to execute a decoder

• Using a Python script

• Using the command line

A decoder typically produces two outputs. One output is textual and in XML format. The other is file-based
and writes files to a specified directory. For example, received binary files or decoded voice are stored
there.

See also procitec.decoding.runtime.ProductionMemory

1.6.1.1. Using a Python script

The function procitec.decoding.runtime.run() can be used to execute a decoder. In the following ex-
ample the decoder package baudot11_dec.pkg is run with the input data from the symbol recording file
baudot11.rec. The output XML is written to standard output.

from procitec.decoding.runtime import run

run("/tmp/baudot11_dec.pkg", "/tmp/baudot11.rec")

To capture the output into a variable and enable file output to production memory (memprod) additional
parameters and some glue objects have to be provided. It is also possible to specify parameters accessible
in the decoder. Especially for long running decoders the result handler is handy, because it allows access
to progress and intermediate results.

from procitec.decoding.runtime import run

from procitec.common.memprod import create

class ResultHandler:

def __init__(self):

self.result_buffer = ""

def write(self, new_results: str) -> None:

self.result_buffer += new_results

def set_progress(self, progress: float) -> None:

print(f"{progress:2.1%}")

def store(self, path: str) -> None:

open(path, "w").write(self.result_buffer)

result_handler = ResultHandler()

(continues on next page)

32 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

(continued from previous page)

memprod_handler = create("/tmp/memprod/", enabled=True)

decoder_parameters = {"var1": "string xy", "var2": 123}

run(

"/tmp/baudot11_dec.pkg",

"/tmp/baudot11.rec",

run_status=result_handler,

mem_prod_handler=memprod_handler,

parameters=decoder_parameters,

)

result_handler.store("/tmp/decoder_result.xml")

Note: Besides a decoder package (*_dec.pkg) also a plain decoder (*_dec.py) file can be used.

1.6.1.2. Using the command line

The package procitec.decoding.runtime itself can be executed directly on the command line Using the
same input as in the example above:

python -m procitec.decoding.runtime --mem_prod_dir "/tmp/memprod/" -p var1="string xy" -

↪→p var2=123 "/tmp/baudot11.rec" "/tmp/baudot11_dec.pkg" >> "/tmp/decoder_result.xml"

There is also a help page available:

python -m procitec.decoding.runtime -h

1.6.2. Bundle a decoder into a decoder package

There are two ways to bundle a decoder into a decoder package

• Using a python script

• Using the command line

See also Creating and Using a New Decoder (using Spyder).

1.6.2.1. Using a Python script

The function procitec.packaging.builder.packager.create_decoder_package() can be used to cre-
ate a decoder package. In the following example the decoder package baudot11_dec.pkg is created from
the decoder baudot11_dec.py

from procitec.packaging.builder.packager import create_decoder_package

package_path, non_env_module_names = create_decoder_package("/tmp/baudot11_dec.py",�
↪→output_path="/tmp/", comment="comment1")

© 2023 PROCITEC GmbH 33 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

1.6.2.2. Using the command line

The package procitec.packaging.builder itself can be executed directly on the command line Using the
same input as in the example above:

python -m procitec.packaging.builder --output "/tmp" "/tmp/baudot11_dec.py"

There is also a help page available:

python -m procitec.packaging.builder -h

34 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

2. Reference

This chapter contains detailed description of the build-in functionalities for decoder implementation. These
are split in three different parts: The decoder runtime describes the interface for the data input and output
as well as the communication of other parts of the processing system, like the demodulator or search state
handling. The next part, BitBuffer describes the main data type for handling bit-level data and functions
for low-level data manipulation. Finally, the Decoding Library contains higher-level functions for common
decoding tasks.

2.1. Decoder Runtime

This is the documentation for the Python module procitec.decoding.runtime.

This module contains types and functions to access input data, produce results or query or set runtime
states like the search state or demodulator parameters.

• Top-Level API

• Input

• Output

• State and Parameters

• File Output

• Audio Output

• Standalone runtime

2.1.1. Top-Level API

The main interface for interaction with the decoder runtime is an instance of APCGateway. It is obtained by
by calling APC() and usually named apc:

>>> from procitec.decoding import runtime

>>> apc = runtime.APC()

>>> apc.data.read(8).to_str()

00000000

>>> apc.output.text1("I have read 10 bits")

The above code shows how to obtain the interface object and exemplary usage. The functionality is often
grouped into sub-objects, e.g. apc.output which contains all of the text output related functionality. apc.
output is an instance of Output which is documented below .

© 2023 PROCITEC GmbH 35 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

procitec.decoding.runtime.APC(* , decoder_version: str = '1.0.0' , namespaces: Sequence[str] = () ,
**kwargs)→ APCGateway

Get the instance of the decoder runtime API and set some common decoder properties

Parameters

• decoder_version (str) – set the decoder version in DecoderProperties

• namespaces (list) – list of namespaces this decoder will use in its output

• **kwargs – additional parameters to forward to apc.decoder_properties()

Returns

instance of the decoder runtime API for this decoder

Return type

APCGateway

class procitec.decoding.runtime.APCGateway

An object which acts as a gateway between a decoder and the APC

burst_end_time(when)

See ignore_burst_detector() for details.

Note: flush is called internally to ensure that a corresponding pair of burst start and end time
is sent to output. So if burst_end_time() is called when an EndOfDataError occurs any output
afterwards will be discarded.

Parameters

when (ProTS or int) – A timestamp or an absolute bit position in the input stream
where the end of a burst occurs.

burst_start_time(when)

See ignore_burst_detector() for details.

Parameters

when (ProTS or int) – A timestamp or an absolute bit position in the input stream
where the start of a burst occurs.

extend_search(extension , * , reference=None)

Extend the maximum time of search to the specified amount of bits relative to the current read
position or optionally the specified reference position.

The search phase is normally limited to around 25 seconds, i.e. if the decoder does not send a
positive or negative identification message (i.e. SearchStateHandler.ident(), SearchStateHandler.
no_sync(), etc.) within 25 seconds during the search phase, the search will be aborted. This
command can be used to extend the maximum time of search beyond 25 seconds.

Parameters

• extension (int) – Minimum time of search phase in bits, starting at current posi-
tion or given reference.

• reference (int, optional) – Input buffer index designating an absolute refer-
ence position for the extension parameter extension

36 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Sequence
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

ignore_burst_detector(ignore_start=True , ignore_end=True)

If a burst demodulator is used, the demodulator’s measurement of burst start and end times
can be overwritten by the decoder. Either the burst start, the burst end or both times can be ig-
nored and replaced by new values using burst_start_time() respectively burst_end_time().
This may be necessary to provide correct and precise information about the timing of bursts
if it cannot be produced correctly by the demodulator or if the demodulator’s results are not
reliable. This also may be necessary if a continuous demodulator is used for burst signals.

The burst timing information will be reported in the XML stream of the production results. For
more details refer to the document PROCITEC-ICD-APC_Results-E.pdf.

Parameters

• ignore_start (bool, optional) – Ignore start times of bursts determined by the
demodulator if True. The start time of bursts must be provided using burst_start_time().

• ignore_end (bool, optional) – Ignore end times of bursts determined by the de-
modulator if True. The end time of bursts must be provided using burst_end_time().

init_codec(name , raw_file_postifx , index)

Initialize an audio codec as a decoder’s output

Two different files will be generated:

• A .codec file which contains raw (encoded) audio frames.

• A .wav file which contains decoded audio frames, provided that the requested audio codec
is supported.

Parameters

• name (str) – Name of audio codec

Available codecs are: AMBE_DVSI_HR (half rate, AMBE+2), AMBE_DVSI_FR (full rate,
IMBE),``G721``, TETRA

• raw_name_postfix (str) – Part of the filename of generated .codec file. For ex-
ample, this can be used to add the codec’s name to the filename.

• index (int) – Must be greater than 0. Part of the filename of generated .codec

and .wav files. For example, this can be used to differentiate between different
slots in a time-division multiple access (TDMA) system.

Return type

AudioCodec

input_channel_mode(interleaved=True , selected=[])

Input channel mode configuration

Parameters

• interleaved (bool, optional) – If True (default), all demodulated channels are
interleaved into a single channel in SymbolStream and BitStream. Otherwise,
the demodulated channels are provided by separate channels. N symbols from
M demodulated channels are provided as follows, where s[i,k] is symbol k from
demodulated channel i:

– With interleaving (default): Symbol-/InputStream channel 0: [s[0,0], s[1,

0], ..., s[M-1,0], s[0,1], s[1,1], ..., s[M-1,1], ..., s[0,N-1],

s[1,N-1], ..., s[M-1,N-1]]

– Without interleaving:

* Symbol-/InputStream channel 0: [s[0,0], s[0,1], ..., s[0,N-1]]

© 2023 PROCITEC GmbH 37 of 158

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

* Symbol-/InputStream channel 1: [s[1,0], s[1,1], ..., s[1,N-1]]

* . . .

* Symbol-/InputStream channel M-1: [s[M-1,0], s[M-1,1], ..., s[M-1,

N-1]]

• selected (list(int), optional) – If the list is empty (default), all channels are
selected, otherwise only the listed channels are provided in the Symbol- and In-
putStream. The values in the list must be monotonically increasing and they must
be in the range [0; M-1], where M is the number of available demodulated chan-
nels.

For example with M = 8 and selected = [0, 4, 7] only the demodulated chan-
nels 0, 4 and 7 are provided. Note that they are accessed by indices 0, 1 and 2 in
the Symbol- and InputStream.

Notes

Input channel mode must be set before reading any data. It cannot be changed afterwards as
it directly affects the internal bit storage. This is especially important when only some channels
were initially selected and one want to change this later. In this case it is recommended to use
the read/peek methods with the parameter channel_index.

input_channel_sync(channel=0)

In case of enabled interleaving, this function consumes all symbols up to the first symbol, be-
longing to the specified channel. If the next to be read symbol already belongs to the specified
channel or interleaving is not enabled, the function has no effect.

preprocessing(*args)

Set the preprocessing steps to be executed before bits are placed in data.

Preprocessing steps are created with the functions in procitec.decoding.preprocessing. To
support conditional steps (e.g. via a conditional expression) arguments with value None are
ignored.

This function can only be called during the initialization of decoder. That is, before any data
input is read.

set_production_hold_time(timeout)

One criterion to stop a modem production is loss of signal. Normally this will be assumed if more
than 5 seconds have elapsed without a reasonable signal. The decoder can hold production by
commands sync, ident or accept if the demodulator works in a continuous mode. In burst mode
however this is not possible, as the decoder has no data input and output during the time of
burst gaps. This results normally in a production termination whenever a burst gap longer than
5 seconds occurs.

In some cases this might be an unwanted behavior. By this command the 5 seconds time limit
can be extended or shortened.

Parameters

timeout (int) – Timeout value in milliseconds.

38 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

set_timeout(timeout)

A timeout error occur if too much time elapses within the decoder without returning control to
the APC instance.

The default time limit for this period is 5 seconds. Timeouts can be caused by programming
errors, like endless loops. However in rare cases this can happen also for correct programs.
The reason could be routines consuming much calculation time and/or processing of very long
data packages. For such cases the timeout limit can be extended to any other value above 0.25
seconds. However this must be handled with care. Too long timeouts can also cause other real
time problems or hang ups of the complete program.

Parameters

timeout (float) – Timeout value in seconds.

property current_mode

Current mode of the APC

The mode is one of the following types:

• APCMode.SEARCH

• APCMode.PRODUCTION

Examples

A string representation of the APC mode can be retrieved by accessing the attribute name of the
returned value, i.e.

>>> apc.current_mode.name

'PRODUCTION'

Conditions on the current mode can be implemented, using APCMode, i.e.

>>> from procitec.decoding import runtime

>>> if apc.current_mode == runtime.APCMode.PRODUCTION:

>>> ...

>>> else:

>>> ...

Type

APCMode

property data

Input bit stream, i.e. the bit stream after symbol decision

Type

procitec.common.bitbuffer.BitStream

property decoder_properties

add meta data to the decoder output

Type

DecoderProperties

property decoder_version

access decoder version as set in the constructor

Type

str

© 2023 PROCITEC GmbH 39 of 158

https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#str

Analysis Suite PYTHON DECODER DEVELOPMENT

property demodulator

Interface to the demodulator

Type

DemodControl

property interleaved_channels

Number of interleaved channels

Type

int

property modem

Provides functions to report the state of the decoder

Type

SearchStateHandler

property output

Provides functions to generate textual decoder output

Type

Output

property parameters

Decoder parameters for this modem

The object is a read-only mapping (dict) supporting all methods of collections.abc.Mapping
except for values(), __eq__() and __ne__().

Type

dict-like

property production_memory

Provides functions to generate files as a decoder output

Type

ProductionMemory

property receiver_frequency

Current absolute receiving frequency of demodulator. Returned value is None if receiver fre-
quency is not available (e.g. replay from recorded bit file). Note that this property should only
be queried after a data exchange has happened. It is recommended to call apc.data.peek(1)

Type

Optional[float]

property symbols

Input symbol stream generated by the demodulator

Type

SymbolStream

property version

APC version

Type

str

40 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#str

PYTHON DECODER DEVELOPMENT Analysis Suite

2.1.2. Input

The main bit-level input class is procitec.common.bitbuffer.BitStream which is documented as part
of the procitec.common.bitbuffer. The class SymbolStream here contains symbol-level input data and
acts as source for apc.data. However, the position in these streams is always synchronized.

class procitec.decoding.runtime.SymbolStream

An object which provides access to a symbol stream generated by a demodulator

peek(out , channel_index=0)

Peek into the symbol stream

Peek into the stream (read from the stream) without consuming any data, i.e. the position in the
stream is not modified.

This is the underlying function for read().

Parameters

• out (buffer) – A buffer object with a dimension of 2. The length of the first di-
mension determines the number of symbols to read. The length of the second
dimension must be 2. The meaning of these two elements depends on the sample
format; see sample_format. The elements in the buffer must of format uint16_t.

• channel_index (int, optional) – The channel to read from. By default (0) the
first channel is read.

Returns

Number of symbols written into the output buffer. An EndOfDataError is thrown if
the stream is closed (see closed) and if additionally one of the following applies:

• The internal buffer does not contain the requested amount of symbols (size pa-
rameter greater than 0). (If the buffer does contain the requested amount of
symbols they will be returned even if the stream is closed).

• The internal buffer is empty (when size parameter is zero).

Return type

int

read(size=None , channel=0)

Read symbols from the demodulator

This is equivalent to a peek() combined with a consume().

Parameters

• size (int, optional) – Number of symbols to read. If None (default), all cur-
rently available symbols are read.

• channel (int, optional) – The channel to read from. By default (0) the first
channel is read.

Returns

Symbols from demodulator. An EndOfDataError is thrown if the stream is closed
(see closed) and if additionally one of the following applies:

• The internal buffer does not contain the requested amount of symbols (size pa-
rameter greater than 0). (If the buffer does contain the requested amount of
symbols they will be returned even if the stream is closed).

• The internal buffer is empty (when size parameter is zero).

© 2023 PROCITEC GmbH 41 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

Each element in the list is a list with two elements. The meaning of these two ele-
ments depends on the sample format; see sample_format.

Return type

list(list(int))

rewind()

Rewind the stream by the given number of symbols, if possible. Throws procitec.common.

bitbuffer.RewindError if not enough symbols are buffered.

set_position(position: int)→ int

Rewind or consume symbols to get to the given absolute position, if possible. Returns the
new position or throws procitec.common.bitbuffer.RewindError if not enough symbols are
buffered.

Parameters

position (int) – The absolute position to jump to.

Returns

The new position

Return type

int

symbol_rate(position: int | None = None)→ float | None

Get symbol rate of symbol at given absolute position, if available.

New in version 24.1.0.

Parameters

position (int, optional) – Position of the symbol for which the symbol rate is to
be determined.

Returns

Symbol rate in baud (1/s) of the symbol at the requested position.

Return type

float | None

time(position: int)→ procitec.common.ProTS

Get timestamp of symbol at given absolute position

Parameters

position (int) – Position of the symbol for which the timestamp is to be determined.

Returns

Timestamp of the symbol at the requested position.

Return type

procitec.common.ProTS

property bits_per_symbol

Bits per symbol

Type

int

property channels

Number of available channels

Type

int

42 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

property closed

True if the symbol stream is closed, False otherwise

Type

bool

property position

Returns the total number of consumed symbols

Type

int

property sample_format

Sample format returned by read()

The sample format is one of the following types:

• SymbolStream.FSK

• SymbolStream.I_Q

• SymbolStream.MAG_PHASE

A string representation of the sample format can be retrieved by accessing the attribute name

of the returned value, i.e.

>>> format = apc.symbols.sample_format

>>> format.name

'MAG_PHASE'

Type

SampleFormat

2.1.3. Output

The text output functionality is provided by apc.output which allows decoders to report text-based decod-
ing result streams. In addition, structured output of decoding result can be done with Output.xml().

Multiple of output streams may be used in parallel, each is an instance of OutputChannel. These can be
obtained via item or attribute access on apc.output:

>>> apc.output.text1("foo")

>>> apc.output["text1"]("foo")

>>> std_out = apc.output.text1

>>> std_out("foo")

class procitec.decoding.runtime.Output

Object which holds and maintains channels for decoder output

Output channels for a decoder can be added using declare_channel(). Output performed to a
specific channel will be enclosed in a XML element whose name is the channel’s name. Every defined
channel is listed inside the XML element decoderProperties.

The channels text1 and notify are always predefined.

© 2023 PROCITEC GmbH 43 of 158

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

Examples

Declare a channel called channel_foo:

>>> apc.output.declare_channel("channel_foo", "Output channel foo")

The channel can be accessed using its name as an attribute or as an index in the Output object:

>>> apc.output.channel_foo.write("bar")

>>> apc.output["channel_foo"].write("bar")

A channel object (OutputChannel) can also be saved in a variable and used instead:

>>> out_foo = apc.output.channel_foo

>>> out_foo.write("bar")

Channel objects also support a function call interface (see object.__call__()) which is equivalent
to using OutputChannel.write():

>>> out_foo("bar") # equivalent to out_foo.write("bar")

__getattr__(name)

Access a specific output channel

Parameters

name (str) – Name of the channel to be accessed

Returns

Output channel object

Return type

OutputChannel

__getitem__(name)

see __getattr__()

declare_channel(name , description , * , description_de=None)

Declare an output channel for the decoder

Declaring an already existing channel (determined by name) is an error. The name must not be
Error (reserved for error reporting).

Parameters

• name (str) – Name of the output channel. Only the characters A-Z, a-z, 0-9 and
:_.- are allowed, however, the name must not start with 0-9 or .-. The channel
name must not be Error (reserved for error reporting).

• description (str) – Description of the channel which will appear in decoder-

Properties.

• description_de (str, optional) – German description of the channel which will
appear in decoderProperties.

flush()

Enforce immediate flush of output. Usually this is done automatically and no manual interven-
tion is necessary. It is recommended to use this command only in special cases.

44 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/reference/datamodel.html#object.__call__
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str

PYTHON DECODER DEVELOPMENT Analysis Suite

new_info_unit(time)

Determines that from the given time position the decoder output can be split into a new emis-
sion.

Parameters

time (ProTS) – Timestamp of the new info unit.

xml(element_or_name , content=None , **kwargs)

Append XML data to the output of a decoder

Parameters

• element_or_name (str or xml.etree.ElementTree.Element) – If an instance of
Element is passed it is serialized to XML. Other arguments must not be passed.

If a string is passed a XML element with the name element_or_name is constructed.
The content of the element is determined by content and **kwargs.

• content (object, optional) – May only be used if element_or_name is a string.
The string representation of object (see str) defines the content of the gen-
erated XML element. If content is None (default) the element’s content will be
empty.

• **kwargs – May only be used if element_or_name is a string. The keyword ar-
guments define the attributes of the generated XML element. The string repre-
sentation of an argument’s value (see str) is used as an attribute’s value. If no
keyword arguments are passed no attributes will be added to the generated XML
element.

Examples

In the simple mode the name of the XML element, its content and attributes are passed:

>>> apc.output.xml("frequency", 12000, unit="Hz", mode="full")

This will generate the following XML element in the decoders output:

<frequency unit="Hz" mode="full">12000</frequency>

Attributes and content are optional:

>>> apc.output.xml("mode_switch", counter=10)

>>> apc.output.xml("resync")

<mode_switch counter="10" />

<resync />

More complex (nested) XML elements can be produced using Python’s xml.etree.ElementTree
module and passing the resulting xml.etree.ElementTree.Element object:

>>> from xml.etree.ElementTree import Element, SubElement

>>> frame = Element("frame", count="10")

>>> mode = SubElement(frame, "mode")

>>> mode.text = "full"

>>> apc.output.xml(frame)

© 2023 PROCITEC GmbH 45 of 158

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3.11/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/3.11/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

Analysis Suite PYTHON DECODER DEVELOPMENT

<frame count="10"><mode>full</mode></frame>

See xml.etree.ElementTree for more details.

class procitec.decoding.runtime.OutputChannel

An object representing an output channel of a decoder; see Output for details and usage.

__call__(object)

see write()

write(data)

Write output to the channel

Parameters

data (str) – String to be appended to the channel output

2.1.4. State and Parameters

class procitec.decoding.runtime.DecoderProperties

Decoder properties represent meta data on the current decoder. They are emitted with the output
and can not be changed afterwards.

Some properties like ‘name’ are build-in and can not be changed. Others, like ‘version’ and ‘names-
paces’ have special setter-functions.

>>> apc.decoder_properties.version("1.0.0")

>>> apc.decoder_properties.namespaces("foo", "bar")

Custom properties can be set by using the call operator

>>> apc.decoder_properties(flag1="foobar", flag2="other")

__call__(**kwargs)

Add the passed key-value-pairs the decoder properties (emitted with the first output)

add(key: str, value: str)

Add a single decoder property

This function can be use circumvent the limitations for keyword args using the call-operator.

namespaces(*args)

Adds the given namespaces to the list of XML namespaces emitted by this decoder

class procitec.decoding.runtime.SearchStateHandler

accept(when=None)

Mark modem as accepted

Parameters

when (ProTS or int, optional) – Specify a timestamp of the start of the signal. If
a position (int) is given it is converted to a timestamp.

If no parameter is given then the beginning of the current input block is taken. An-
other call with an explicit new timestamp/position will overwrite an existing value.

46 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

ident(when=None , weight=50)

Mark modem as identified

Parameters

• when (ProTS or int, optional) – Specify a timestamp of the start of the signal.
If a position (int) is given it is converted to a timestamp.

If no parameter is given then the beginning of the current input block is taken.
Another call with an explicit new timestamp/position will overwrite an existing
value.

• weight (int, optional) – If it is expected that two different decoders may send
their identification message Ident() for the same input signal simultaneously be-
cause further differentiation is not possible, this message can be weighted. The
default value for the identification weight is 50. It can be set to greater or lower
values by simple assignments. Greater values will cause the automatic produc-
tion channel to prefer this decoder. By this, a certain sort of decoder precedence
can be arranged.

no_sync()

Mark modem as NO_SYNC

stop()

Mark modem as STOPPED

sync()

Mark modem as SYNC

class procitec.decoding.runtime.APCMode

Members:

SEARCH

PRODUCTION

PRODUCTION = <APCMode.PRODUCTION: 0>

SEARCH = <APCMode.SEARCH: 1>

property name

property value

class procitec.decoding.runtime.DemodulatorParameters

An object which provides access to demodulator parameters

Possible parameters are:

• 'primary_modulation' (PrimaryModulationType)

• 'demodulator_type' (DemodulatorType)

• 'symbol_rate' (float in Hz)

• 'symbol_rate_tolerance' (float in Hz)

• 'modulation_order' (int)

• 'shift' (float in Hz)

• 'shift_tolerance' (float in Hz)

• 'synchronization' (str)

© 2023 PROCITEC GmbH 47 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#str

Analysis Suite PYTHON DECODER DEVELOPMENT

• 'burst_mode' (bool)

• 'minimum_burst_pause' (float in seconds)

• 'minimum_burst_length' (float in seconds)

• 'maximum_burst_length' (float in seconds)

• 'PSK_version' (str 'A' or 'B')

• 'PSK_equalizer' (bool)

• 'tone_duration' (float in seconds)

• 'tone_duration_tolerance' (float in seconds)

• 'number_of_tones' (int)

• 'tone_distance' (float in Hz)

• 'number_of_channels' (int)

• 'channel_distance' (float in Hz)

• 'channels_equidistant' (bool)

• 'morse_cpm_range' (int)

• 'fixed_cpm_range' (float in CPM)

• 'cpm_range_tolerance' (float in CPM)

• 'symbol_table' (list (int))

• 'channel_frequencies' (list (float) in Hz)

• 'nominal_frequency_offset' (float in Hz)

Example

The available parameters depend on the used demodulator. If a specific parameter is available for
the current demodulator, can be checked by

>>> if 'symbol_rate' in apc.demodulator.parameters:

>>> value = apc.demodulator.parameters['symbol_rate']

class DemodulatorType

Enumeration of supported demodulator types:

Members:

Morse

ASK2_OOK

FSK_disc

FSK_2_matched

MSK

DPSK

Multitone_FSK

Multichannel_FSK_2

48 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float

PYTHON DECODER DEVELOPMENT Analysis Suite

Multichannel_DPSK

PSK_absolute

Multichannel_PSK_absolute

F1A

OFDM

OQPSK

QAMN

PSK_data_aided

FSK_auto_shift

ASK2PSK2

ASK2PSK2 = <DemodulatorType.ASK2PSK2: 43>

ASK2_OOK = <DemodulatorType.ASK2_OOK: 2>

DPSK = <DemodulatorType.DPSK: 6>

F1A = <DemodulatorType.F1A: 21>

FSK_2_matched = <DemodulatorType.FSK_2_matched: 4>

FSK_auto_shift = <DemodulatorType.FSK_auto_shift: 36>

FSK_disc = <DemodulatorType.FSK_disc: 3>

MSK = <DemodulatorType.MSK: 5>

Morse = <DemodulatorType.Morse: 1>

Multichannel_DPSK = <DemodulatorType.Multichannel_DPSK: 9>

Multichannel_FSK_2 = <DemodulatorType.Multichannel_FSK_2: 8>

Multichannel_PSK_absolute = <DemodulatorType.Multichannel_PSK_absolute: 20>

Multitone_FSK = <DemodulatorType.Multitone_FSK: 7>

OFDM = <DemodulatorType.OFDM: 22>

OQPSK = <DemodulatorType.OQPSK: 23>

PSK_absolute = <DemodulatorType.PSK_absolute: 15>

PSK_data_aided = <DemodulatorType.PSK_data_aided: 27>

QAMN = <DemodulatorType.QAMN: 24>

property name

property value

© 2023 PROCITEC GmbH 49 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

class PrimaryModulationType

Enumeration of supported primary modulation types:

Members:

AM

FM

LSB

USB

AM = <PrimaryModulationType.AM: 0>

FM = <PrimaryModulationType.FM: 1>

LSB = <PrimaryModulationType.LSB: 2>

USB = <PrimaryModulationType.USB: 3>

property name

property value

__bool__()

True if parameters for current demodulator are available

__getitem__(key: str)

Returns value for given key or raises exception if parameter is not available

get(key: str, default_value: object)

Returns value for given key or default_value if parameter is not available

property burst_mode

Burst_mode enabled or None if parameter not available

Type

bool or None

property demodulator_type

Demodulator type or None if parameter not available

Type

DemodulatorType or None

property modulation_order

Modulation order or None if parameter not available

Type

int or None

property primary_modulation

Primary modulation type {USB, LSB, AM, FM, . . . }

Type

PrimaryModulationType

property symbol_rate

Symbol rate or None if parameter not available

Type

float or None

50 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#object

PYTHON DECODER DEVELOPMENT Analysis Suite

class procitec.decoding.runtime.DemodControl

modify()

Initiates and returns a context manager to modify the demodulator or to perform a rewind of
the demodulator.

The returned context object provides a dict-like interface to request a modification of the de-
modulator. The parameters which can be changed are described in DemodulatorParameters.
Unmodified parameters inherit values which are in place just before the context is entered, e.g.
changing the demodulator type only will not affect other parameters.

The returned context object also provides the rewind() method to request a rewind of the de-
modulator to the timepoint specified as a ProTS.

You can either request a demodulator change only, rewind only or both at the same time. Upon
exit from the context the demodulator is rewound and changed. The request – especially a
rewind request – may fail; an exception is thrown in this case.

Warning: This is a very advanced feature. You must not ignore the exception which is thrown
when the requested change fails.

Rewinding into the past is possible in a limited manner only – expect not more than about
30 seconds (reference timepoint is the current position in the input stream). Rewinding into
the “future” is only possible if the requested timepoint is already known in the input stream,
i.e. the farthest possible timepoint for rewind is apc.data.time(last_known_pos) where
last_known_pos = apc.data.position + apc.data.available - 1.

Examples

Change the demodulator type to absolute PSK with a symbol rate of 2400 and perform a rewind:

>>> with apc.demodulator.modify() as mod:

>>> mod['demodulator_type'] = runtime.DemodulatorParameters.

↪→DemodulatorType.PSK_absolute

>>> mod['symbol_rate'] = 2400

>>> mod.rewind(time) # time must be of type ProTS

Change demodulator parameters to a predefined set of parameters:

>>> # predefined parameter sets

>>> param0 = {'demodulator_type': runtime.DemodulatorParameters.

↪→DemodulatorType.PSK_absolute,

... 'symbol_rate': 2400, 'PSK_version': 'B', 'modulation_order': 4}

>>> param1 = {'demodulator_type': runtime.DemodulatorParameters.

↪→DemodulatorType.Multichannel_DPSK,

... 'symbol_rate': 300, 'channel_distance': 900, 'PSK_version': 'A',

↪→'modulation_order': 8,

... 'number_of_channels': 3}

>>> new_params = # ... logic to determine new parameter set; can also be�
↪→placed inside the ‘with’ clause

>>> with apc.demodulator.modify() as mod:

>>> for name, value in new_params.items():

>>> mod[name] = value

© 2023 PROCITEC GmbH 51 of 158

https://docs.python.org/3.11/glossary.html#term-context-manager

Analysis Suite PYTHON DECODER DEVELOPMENT

set_burst_preamble(value , mask , sync_offset)

Sets a preamble to search for a burst.

This command will affect all PSK demodulators operating in “Burst Mode”. In this mode de-
modulation will only take place during the time of a burst. Normally a burst is detected by
signal energy changes only. However, in some cases a burst start can also be detected by a
known symbol pattern at a defined position within the burst, e.g. a synchronization preamble,
training sequence etc. This method can result in more reliable detections in the presence of
non-continuous noise.

The command can be repeated with different parameters to indicate different possible pream-
bles.

To ensure correct demodulator operation, it is mandatory to use this command at the beginning
of the decoder execution.

Note that the burst end detection will still be based on signal energy changes as before.

Parameters

• value (BitBuffer or list(Optional(complex))) –

– Preamble consisting of the pattern and arbitrary placeholders for unknown bits
or symbols.

– If the type BitBuffer is used then parameter mask can be used to specify un-
known bits in the pattern. The bits in the BitBuffer are used to form an IQ-
symbol pattern with the symbol table of the demodulator.

– To indicate IQ symbols directly, a list of complex IQ values can be used. At
positions with unknown values the list must contain None, 0+0j or NAN.

• mask (BitBuffer) –

– Data mask of the length of value to distinguish between variable (payload) data
and fixed bit patterns. A binary value 1 designates a share of fixed bit pattern
and the value 0 a share of variable (payload) data.

– Only allowed if the type of parameter value is a BitBuffer.

– If omitted, then assumed to be all-ones.

• sync_offset (int) –

– Distance of burst start to the first symbol of specified pattern.

– If the type of value is BitBuffer, sync_offset is given in bits, else in symbols.

– Maximum value: length of burst – length of value

Examples

Given a “pseudo”-burst with a preamble of some unknown(U) and 6 known(K) symbols at the
beginning:

UUUU KKKK UU KK UUUUUUUUUU. . .

Known pattern KKKK UU KK is one of the following possibilities:

>>> preamble = [0+1j, 1+0j, 0+1j, -1+0j, None, None, 0-1j, 1+0j]

>>> preamble = [0+1j, 1+0j, 0+1j, -1+0j, 0+0j, 0+0j, 0-1j, 1+0j]

>>> preamble = np.array([0+1j, 1+0j, 0+1j, -1+0j, 0+0j, 0+0j, 0-1j, 1+0j])

The command to set the burst-preamble is

52 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#complex
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

>>> apc.demodulator.set_burst_preamble(preamble, sync_offset=4)

With the use of the demodulator constellation and a Bitpattern the function call differs:

>>> constellation_qpsk = {0b00: 1+0j, 0b01: 0+1j, 0b10: -1+0j, 0b11: 0-1j}

Known pattern for the preamble defined above KKKK UU KK is

>>> preamble = BitBuffer.from_int(0b0011_0000_1001_0001)

>>> pre_mask = BitBuffer.from_int(0b1111_0000_1111_1111)

Then the command to set the burst-preamble is

>>> apc.demodulator.set_burst_preamble(preamble, pre_mask, sync_offset=4*2)

It is important to observe the bit order of the symbol table and that the unit of sync_offset
differs when using the IQ-type or bit pattern function call.

Should the mask be all-ones it may be omitted.

>>> preamble = BitBuffer.from_int(0b1001_0001)

>>> pre_mask = BitBuffer.from_int(0b1111_1111) # may be omitted

Then the command to set the burst-preamble is as before

>>> apc.demodulator.set_burst_preamble(preamble, pre_mask, sync_offset=4*2)

but in this case equivalent to

>>> apc.demodulator.set_burst_preamble(preamble, sync_offset=4*2)

Note: The preamble in the above examples is kept short for clarity. In practical use case the
bit/symbol sequences of known values should span over significantly more than 10 symbols.
Think in terms of probability of detection in gaussian noise a random sequence of symbols.

set_filter(filter_type , roll_off)
Sets the filter form of the demodulators receive filter.

This command is used exclusively in connection with the demodulator PSK Data Aided. For this
demodulator, the symbol filter can be matched to the special modem similar to a Matched Filter.
The respective methods and parameters mostly result from published modem descriptions. The
use of this command is optional. Without this instruction, a universal and wider filter will be
used, which does require a better signal-to-noise ratio but also tolerates larger fluctuations in
center frequency and symbol rate.

To ensure correct demodulator operation, it is mandatory to use this command at the beginning
of the decoder execution.

Parameters

• filter_type (str) – Form of filter. Possible values are "RC" and "RRC" for Raised-
Cosine and Root-Raised-Cosine.

• roll_off (float) – Filter roll-off in range 0.0-1.0

© 2023 PROCITEC GmbH 53 of 158

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#float

Analysis Suite PYTHON DECODER DEVELOPMENT

Examples

>>> apc.demodulator.set_filter('rrc', 0.35)

set_soft_symbols(format)

The demodulator will be advised to deliver soft symbols (or samples) in addition to the conven-
tional bit stream.

Soft symbols are always delivered as pairs of unsigned 16-bit integers. Each pair is one symbol.
However, the meaning of the pair elements differs depending on the specified symbol format.

For magnitude/phase symbols (MAG_PHASE):

• The first element of a sample corresponds to the magnitude and uses the full 16 bit range.
A value of 2**15 (the middle of the value range) matches a magnitude of 1.

• The second element of a sample corresponds to the phase. The phase range [0, 2*pi] is
mapped to full 16 bit.

• Only the PSK demodulators can provide these values.

For fsk symbols (FSK):

• The first element of a sample corresponds to the magnitude and uses the full 16 bit range.

• The second element is always 0.

• Only the demodulator 'FSK_discriminator' can provide these values.

Parameters

format (SampleFormat) – Format of the requested soft symbols. Has to be MAG_PHASE
or FSK.

Examples

Informing the demodulator to deliver magnitude/phase pairs. This should be done once at de-
coder start.

>>> from procitec.decoding import MAG_PHASE

>>> apc.demodulator.set_soft_symbols(MAG_PHASE)

Read and print the soft-symbols

>>> soft_symbols = apc.symbols.read(size=4)

>>> soft_symbols

[[31632, 160], [35824, 16327], [31152, 65376], [31648, 32416]]

Convert these values into normalized float values (which is normally not necessary), with usage
of numpy.

>>> np.array(soft_symbols) / [2**15, 2**16 /(2*np.pi)]

[[0.97 0.02]

[1.09 1.57]

[0.95 6.27]

[0.97 3.11]]

You can see that these values belong to a noisy QPSK constellation.

54 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

set_training_pattern(frame , frame_mask , sync_offset , sync_length , min_length)

Specifies a training pattern used for equalization of distorted signals.

This command is used exclusively for the demodulator PSK Data Aided. This demodulator has
been designed for adaptive equalization based on specific training patterns. As a result of such
equalization, multipath fading effects are corrected. The correct phase reference of absolute
PSK signals is, as a result, matching the training pattern

The areas shaded in grey comprise of symbol sequences, partially used as training patterns
for adaptive filtering and partially for time synchronization of the entire sequence. Additionally,
an “unusable” time segment, e.g. a pre-carrier, may be located in front of the synchronization
pattern start. To support the synchronization, you may specify this time range as well. This may
be required e.g. if the synchronization pattern is very short and there is a risk of false “random
hits”. Parameters described below specify the entire frame. Typically, the training pattern is
interleaved with the payload data as follows

To ensure correct demodulator operation, it is mandatory to use this command at the beginning
of the decoder execution.

Parameters

• frame (BitBuffer or list(complex or None)) –

– Data frame consisting of the pattern and arbitrary placeholders for unknown
bits or symbols respectively payload.

– If the type BitBuffer is used the use of argument frame_mask is mandatory, else
forbidden. The bits in the BitBuffer are used to form an IQ-symbol pattern with
the symbol table of the demodulator.

– To indicate IQ symbols directly, a list of complex IQ values can be used. At
positions with unknown values the list must contain None, 0+0j or NAN.

– Sequences used for synchronisation should be long and unique enough to en-
able robust detection.

– Contiguous training sequences (probes) should be at least 6 symbols long, oth-
erwise they cannot be optimally used for equaliser training.

• frame_mask (BitBuffer) –

– Data mask of the length of value to distinguish between variable (payload) data
and fixed bit patterns. A binary value 1 designates a share of fixed bit pattern
and the value 0 a share of variable (payload) data. Please note that the area of
the synchronization pattern must be fully masked with 1 without interruptions.

– Only allowed if the type of argument value is a BitBuffer.

• sync_offset (int) –

– If the defined frame comprises a prekey, i.e. a start unsuitable for synchro-
nizing, make sure to enter the minimum length of this preamble here. How-
ever, this is only required if there is a risk of confusion with the synchroniza-
tion symbols within the prekey (e.g. with short and/or regular synchronization
patterns). Otherwise enter the value 0. The frame defined using frame (and
frame_mask) must contain a preamble of this length under all circumstances
but the values entered there are irrelevant.

© 2023 PROCITEC GmbH 55 of 158

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#complex
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

– If the type of frame is BitBuffer, sync_offset is given in bits, otherwise in sym-
bols.

– Valid range: 0 - min_length

• sync_length (int) –

– Length of synchronization pattern. This pattern is necessary to determine the
exact reference position of the frame defined. Therefore, this pattern should
be clearly identifiable due to random variety and length.

– If the type of frame is BitBuffer, sync_length is given in bits, otherwise in sym-
bols.

– Valid range: 1 - min_length

• min_length (int) –

– Some modems use different frame lengths. Shorter frames then have the same
start followed by the same structure but the payload data section at the end is
shorter. If so, enter the minimum frame length, otherwise the value of Frame-
Length will be used.

– If the type of frame is BitBuffer, min_length is given in bits, otherwise in symbols.

– Valid range: 1 - length of frame

Examples

Given a “pseudo”-pattern for a PSK burst modem with unknown(U), known(K), sync symbols(S)
and a (useless) prekey (P)

PPPPP SSSS UUU KK UUU KK UUU

The different patterns could be defined as follows

>>> sync = [1+0j, 0+1j, -1+0j, 0-1j]

>>> known = [0+1j, 0+1j]

>>> unknown = [None] * 3

>>> preamble = [None] * 5

The combined pattern

>>> pattern = preamble + sync + unknown + known + unknown + known + unknown

>>> set_training_pattern(pattern, sync_offset=5, sync_length=4, min_length=22)

The same can be achieved using a bitpattern and the symbol table of the demodulator. Given
the symbol table

>>> constellation_qpsk = {0b00: 1+0j, 0b01: 0+1j, 0b10: -1+0j, 0b11: 0-1j}

The full pattern:

>>> pattern = BitBuffer.from_int(0b000000_0101_000000_0101_000000_111001_

↪→000000000000, 44)

>>> pt_mask = BitBuffer.from_int(0b000000_1111_000000_1111_000000_111111_

↪→000000000000, 44)

>>> set_training_pattern(pattern, pt_mask, sync_offset=5*2, sync_length=4*2,�
↪→min_length=22*2)

56 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

It is important to observe the bit order of the symbol table and that the unit of sync_offset,
sync_length and min_length differs when using the IQ-type or bit pattern function call.

property parameters

Current demodulator type and parameters

Type

DemodulatorParameters

2.1.5. File Output

class procitec.decoding.runtime.ProductionMemory

An object providing access to file output facilities in a decoder.

It is recommended to use the following API for any file output. This way it is ensured that all created
files are stored in the so-called production memory folder (e.g. C:\users\username\go2SIGNALS\go2DECODE\mem_prod).
The name of a file stored there has a fixed scheme and contains among others a timestamp which is
taken from the current read position within the input stream.

Files generated with the builtin Python functions or generated by external libraries should be copied
with the ProductionMemory.copy() function.

Note that only files created in the production memory folder will be reported and made available to
the monitoring system.

copy(filename: str | Path)→ str | None

Copies a file to production memory. This can be used for files generated by external libraries or
files generated with Pythons built-in packages, e.g. tempfile.

The file is renamed to match the default production memory filename template. The file exten-
sion is truncated to the first 10 characters. If the file has no extension, “.bin” is used. This is due
to internal filename constraints.

If the production memory is not available no copy happens.

The file is reported automatically. There should be no additional call of ProductionMemory.
report_file().

New in version 24.1.0.

Parameters

filename (str) – Absolute path of file to be copied. It must contain an absolute path
with forward slashes or backslashes.

Returns

The path to the copied file in production memory if copy was successful.

Return type

str or None

Raises

• FileNotFoundError – If the file to copy was not found.

• IsADirectoryError – If the filename does not contain a file, but a valid directory.

• RuntimeError – If the file could not be read.

© 2023 PROCITEC GmbH 57 of 158

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.11/library/exceptions.html#IsADirectoryError
https://docs.python.org/3.11/library/exceptions.html#RuntimeError

Analysis Suite PYTHON DECODER DEVELOPMENT

Examples

>>> from tempfile import NamedTemporaryFile

>>> file = NamedTemporaryFile(suffix=".data", delete=False)

>>> file.write(b"1234")

>>> file.close()

>>> print(file.name)

/tmp/tmpxhfc6ecv.data

>>> memprod_filename = apc.production_memory.copy(file.name)

>>> print(memprod_filename)

.../mem_prod/decoder_xy/20170606/20170606-110030-008__0000000000_D01.data

open(extension: str, mode: str = 'w' , encoding: str | None = None , msb_first: bool | None = None)

Open a file in the production memory

Opening of a file fails if too many files are opened. A RuntimeError with an appropriate error
message is thrown in that cases.

If production memory is not available the opened file is stub and write() discards all data.

Note that a physical file is only created when the file is actually written to with write()

Parameters

• extension (str) – File extension to be used for the file. Only the characters a-z,
A-Z, 0-9, . and _ are allowed. The length of the extension must be in the range
(including) 1–10.

Changed in version 24.1.0: Relaxed restrictions on length of extension

• mode (str, optional) – Mode in which the file is opened. By default ("w") the
file is opened for writing in text mode. In text mode (the default, or when "t"

is included in mode), only strings (str objects) may be passed to write(). The
strings are written in the character encoding defined by encoding to the file.

The file can be opened in binary mode by including "b" in mode. In binary mode
only bytes and bytearray objects or BitBuffer may be passed to write(). The
bytes are written as is to the file. In case of BitBuffer bit ordering can be set by
msb_first.

Newline characters ("\n" and "\r") are never modified in any way (unlike with
files created using Python’s open()).

• encoding (str, optional) – Encoding to be used in text mode; may only be pro-
vided for a file in text mode. By default (None) UTF-8 is used (unlike with files
created using Python’s open(), where a platform dependent encoding is used).
For a list of supported encodings see codecs.

• msb_first (bool, optional) – Specifies whether the bytes should be written as
MSB (most significant bit) or LSB (least significant bit) first. This parameter is
only taken into account when data is of type BitBuffer in write(). Default is false
(LSB).

If the binary output should is byte-oriented, e.g. an additional application layer
then MSB is recommended. However, if the output is bit-oriented, e.g. original
signal without channel decoding (detector only) or there is still some framing
(start/stop bits) left then LSB is advised.

Changed in version 22.2.0: Added msb_first

Return type

ProductionMemoryBinFile or ProductionMemoryTextFile

58 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/exceptions.html#RuntimeError
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytearray
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/codecs.html#module-codecs
https://docs.python.org/3.11/library/functions.html#bool

PYTHON DECODER DEVELOPMENT Analysis Suite

Raises

RuntimeError – If too many files are opened at once.

report_file(filename: str)→ None

Inform the system about a new result file created independently of pyDDL API. This e.g. can be
used to report files created by an external shared lib (DLL) which is loaded by the decoder. To
ensure that the external DLL also writes to the production memory folder use name() to get the
path and then give this path to the external DLL.

The filename must contain an absolute path with forward slashes or backslashes.

Parameters

filename (str) – Absolute path of new created file

property enabled

Check if the production memory is enabled

class procitec.decoding.runtime.ProductionMemoryBinFile

An object to access a production memory file

This is the base type returned by ProductionMemory.open(). All methods and attributes described
herein after are supported by files in text and binary mode.

The object provides a context manager, i.e. it can be used in a with statement in Python:

>>> with apc.production_memory.open("ext") as fd:

>>> foo = "0x{:x}".format(42)

>>> fd.write(foo)

The file is closed automatically once all code in the with statement body has been executed, even if
an exception is thrown therein.

close()

Close the production memory file

write(data)

Write data to the production memory file

Parameters

data (str or bytes or bytearray or BitBuffer) – Data to write to the file. For
files in text mode data must be a str object which is converted using the encod-
ing specified at ProductionMemory.open(). For files in binary mode data must be
a bytes or bytearray object which is written as is into the file. For files in binary
mode data can also be of type BitBuffer. The parameter msb_first specified in
ProductionMemory.open() determines then the bit ordering when converting Bit-
Buffer to bytes. It is not possible to use another type for data after the first writing
has occurred.

Changed in version 22.2.0: The argument can now be a BitBuffer

property closed

True if the file is closed, False otherwise

property name

Filename currently being written to, if any.

This is set to None until the underlying storage-handler opens a file - usually with the first write-
operation.

Returns

filename (including path) in-use of the last write-operation

© 2023 PROCITEC GmbH 59 of 158

https://docs.python.org/3.11/library/exceptions.html#RuntimeError
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/glossary.html#term-context-manager
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytearray
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytearray

Analysis Suite PYTHON DECODER DEVELOPMENT

Return type

str or None

class procitec.decoding.runtime.ProductionMemoryTextFile

All methods and attributes of ProductionMemoryBinFile are supported

property encoding

Character encoding used for writing data to the file

Type

str

2.1.6. Audio Output

class procitec.decoding.runtime.AudioCodec

An object for an audio codec

close()

Close audio codec and associated files

decode(data , timestamp , **kwargs)

Decode an encoded frame and write data to output files

Raw (encoded) data is written to .codec files; decoded audio frames are written to .wav files
(provided that the requested audio codec is supported).

Parameters

• data (bytes or BitBuffer) – Raw (encoded) audio frame. This is written to the
.codec file.

Changed in version 21.2.0: The argument can now be a BitBuffer

• timestamp (ProTS) – Timestamp of the audio frame

• **kwargs – Decode parameters

set_parameters()

Set audio decoder parameters

May only be called before the very first call to decode() (right after the audio codec object is
returned by APCGateway.init_codec()) or between start_new_file() and decode().

Parameters

**kwargs – Decoder parameters

start_new_file()

Start new output files

Close current output files (.codec and .wav) and start new ones. This can be used to start new
files after a period of silence.

property closed

True if the codec is closed, False otherwise

60 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#bytes

PYTHON DECODER DEVELOPMENT Analysis Suite

2.1.7. Standalone runtime

procitec.decoding.runtime.run(source , datafile , * , parameters: dict, name=None , run_status=None ,
mem_prod_handler=None , enable_timeout=False , **kwargs)

Execute a decoder offline using a datafile as input.

Parameters

• source (callable or path-like or tuple[path-like, str]) – The decoder to
run. May be one of the following:

– A callable that takes an apc object as argument

– A path to a file whose content is read and used as the decoder’s code

– A tuple containing a path and the decoder’s code as a string (the file pointed to
by the path is not read).

• datafile (str) – A .rec-file to use as input data

• parameters (dict, optional) – Decoder parameters, which can be queried in the
decoder. see procitec.decoding.runtime.APCGateway.parameters.

• name (str, optional) – Decoder name to be used used in the output’s XML header.
If None (default) and if source is a path to a decoder, the filename of the decoder is
used (_dec suffix and file extension is removed).

• run_status (object, optional) – If None (default), decoder’s output is written to
stdout. Otherwise run_status must be an object providing the following methods:

– The callable write accepting a str argument: Used to report decoder’s text
output.

– The callable set_progress accepting a float argument: Used to report de-
coder’s approximate progress (0-1).

• mem_prod_handler (procitec.common.memprod.MemProdHandler, optional) – Used
to specify where non-text decoder result (files) are stored. If not given, there is no
file output. The MemProdHandler can be created with procitec.common.memprod.

create().

• enable_timeout (bool) – A timeout error occur if too much time elapses within the
decoder without returning control to the APC instance.

The time limit can be set within the decoder itself - see procitec.decoding.runtime.
APCGateway.set_timeout(). The default is false.

• **kwargs – Keyword arguments are passed to APC()

Examples

see Executing a decoder

© 2023 PROCITEC GmbH 61 of 158

https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

2.2. BitBuffer

This module contains two central types for handling bit-level data, BitBuffer and BitStream. The former
represents data of known size along with meta-data like a timestamp, the demodulation quality or burst
information. BitBuffer object supports indexing individual bits as well as bitwise and bitshift operators.

A BitStream represents an infinite stream of bits, which can be accessed by reading chunks into a BitBuffer.
Additional methods allow querying meta-data or manipulating the current position within the stream.

The functions in this module are used to query or manipulate BitBuffer/BitStream objects. The main cate-
gories are shorthands for recurring operations and the free-form of the supported operators on BitBuffer
object, allowing customized behavior.

• BitBuffer

• BitStream

• Helper Functions

• Shift Operations

• Bitwise Operations

2.2.1. BitBuffer

This class is used to access individual bits stored in an internal or external buffer. In the context of decoder
development BitBuffer objects are mostly created as a result of reading data provided by the demodulator
via the input buffer apc.data which is an instance of BitStream.

Aside from creating BitBuffer objects with an empty buffer, there are a number functions to convert values
provided as str or int and vice versa.

In the following example a BitBuffer with size=16 is created from an integral value:

>>> bb = BitBuffer.from_int(0xf531)

>>> bb.size

16

>>> bb.to_int()

62769

>>> hex(bb.to_int())

'0xf531'

Note, that while the conversion back to int yields the original value, a conversion to a string reveals the
internal bit and byte ordering:

>>> bb.to_str()

'1000110010101111'

>>> bb[0], bb[1], bb[2], bb[3], bb[4], bb[5], bb[6]

(True, False, False, False, True, True, False)

>>> bytes(bb).hex()

'31f5'

The least significant bit (LSB) is first – it is assigned the index 0 and therefore shown first. This can also
be seen when individual bits are accessed by index. Furthermore, if converted to bytes, the content of the
internal buffer is returned – here formatted as hex value. The byte order is little-endian, which means that
the byte holding bits 0 to 7 is first. That is why the bytes are 31f5 in comparison to the original notation in
the integer literal.

62 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

Aside from the data itself BitBuffer objects can store meta-information which includes

• Timestamps: Using BitBuffer.time() a timestamp for any position within the buffer is re-
turned.

• Quality: The demodulation quality for each bit, if available. See BitStream.read().

BitBuffer supports shift operators (<< and >>) and bitwise operators (&, |, ^, ~). These require operands of
equal size, if used with another BitBuffer. In addition they may be used with int value directly:

>>> bb = BitBuffer.from_int(0b1101)

>>> str(bb & BitBuffer.from_int(0b1100))

'0011'

>>> str(bb & 0b1100)

'0011'

All of the operators functionality is also available as functions allowing additional features.

class procitec.common.bitbuffer.BitBuffer(reserved_or_buffer , size: int | None = None , offset: int
= 0)

Creates a new BitBuffer by either allocating memory or referencing the data passed as first argument
using the buffer protocol.

Parameters

• reserved_or_buffer (int or BitBuffer or bytes or bytearray) – If an int is
passed it is number of bits for which memory is allocated. This will be the capacity

and is always rounded up to an integer multiple of 8. The memory is initialized with
all 0

Else, the memory of the passed buffer object shall be reused. If this is an im-
mutable, the content of the returned BitBuffer can not be modified.

• size (int, optional) – Defines size of BitBuffer

If reserved is given:

Must not exceed reserved - offset. If None (default) size is set to reserved -

offset.

If buffer is given:

If None (default) size is set to the size in bits of buffer minus offset. If this
exceeds the size of buffer, new memory is allocated and buffer is not used at
all.

• offset (int, optional) – Defines offset, must be in range 0 to 7, denoting the
index of the first used bit in the memory. See also size parameter.

__bool__()

True if BitBuffer size is greater 0, False otherwise. Note, that to check if a BitBuffer contains
only zeroes one has to use bitbuffer == 0.

__getitem__(index_or_slice_or_sequence)→ bool | BitBuffer

Get the value of a single bit or a view on the BitBuffer or a partial copy

Parameters

index_or_slice_or_sequence (int or slice or Sequence[int]) – If an int is given
the value of the bit with this index is returned. Negative values allow counting from
the end: -1 is the last bit.

If a slice is given a BitBuffer with the corresponding bits is returned. For slices with
step=1, the memory if reused for in-place modification. Else, the bits are copied to
a new buffer.

© 2023 PROCITEC GmbH 63 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytearray
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#slice
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

If a sequence is given a BitBuffer with the corresponding bits is returned. The bits
are copied to a new buffer.

Raises

• IndexError – If the specified index is not available, including the indexes in se-
quence.

• ValueError – If the slice does not match or the slice length is 0.

Return type

bool or BitBuffer

Example

>>> bb = BitBuffer.from_int(0x1234, 16)

>>> bb.to_str()

'0010110001001000'

>>> bb[0]

False

>>> bb[2:8].to_str()

'101100'

>>> bb[2::2].to_str()

'1100010'

>>> bb[2, 0, 7, 11].to_str()

'1000'

__str__()

Returns BitBuffer.to_str(119). Bit output string of BitBuffer with size > 119 will automatically
be truncated at bit No. 119 followed by “. . . ”.

clear()→ None

Fills the buffer with zeros and resets ‘size’ and offset to 0

copy()→ BitBuffer

Copies the bitbuffer and the underlying memory.

Returns

The copied buffer.

Return type

BitBuffer

extend(buffer: BitBuffer, include_shadows: bool = True)→ None

Extends the BitBuffer by the given buffer

This increases the size by the size of buffer. No reallocation of memory is performed, therefore
the capacity of the BitBuffer must not be exceeded.

Parameters

• buffer (BitBuffer) – Bits to append.

• include_shadows (bool, optional) – Also extend with the shadow buffers if true.

Return type

None

Raises

ValueError – If the remaining capacity is not large enough to hold the additional
bits.

64 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/exceptions.html#IndexError
https://docs.python.org/3.11/library/exceptions.html#ValueError
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/exceptions.html#ValueError

PYTHON DECODER DEVELOPMENT Analysis Suite

Examples

>>> bb = BitBuffer(16, 0)

>>> bb.size

0

>>> bb.extend(BitBuffer.from_int(3, size=2))

>>> bb.extend(BitBuffer.from_int(0, size=3))

>>> bb.size, bb.to_str()

(5, '11000')

fill()

fill with py::buffer

static from_bytes(value: bytes, byteorder: str = 'little')→ BitBuffer

Creates a new BitBuffer and initialize its content with the bytes value

New in version 22.2.0.

Parameters

• value (bytes) – Content of the new BitBuffer.

• byteorder (str) – Endianness of the bytes: little or big

Return type

BitBuffer

Examples

>>> BitBuffer.from_bytes(b"\x12\x3F").to_str()

'0100100011111100'

>>> BitBuffer.from_bytes(b"\x12\x3F", byteorder="big").to_str()

'1111110001001000'

static from_int(value: int, size: int | None = None)→ BitBuffer

Creates a new BitBuffer and initializes its content with the int value

Parameters

• value (int) – Content (LSB first) of the new BitBuffer.

• size (int, optional) – Specifies the size of the returned BitBuffer. By default
(None), the size is equal to the required number of bits to represent value (ignor-
ing the sign bit).

Return type

BitBuffer

© 2023 PROCITEC GmbH 65 of 158

https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

Examples

>>> BitBuffer.from_int(0x123, 16).to_str()

'1100010010000000'

static from_iter(value: Sequence[int] , size: int)→ BitBuffer

Creates a new BitBuffer and initializes its content from all int objects in value

New in version 23.2.0.

Parameters

• value (Sequence[int]) – Content (LSB first per element) of the new BitBuffer.

• size (int) – Specifies the number of bits for each value given. The resulting size

of the returned BitBuffer is therefore the number of values multiplied with this
parameter.

Return type

BitBuffer

Examples

>>> BitBuffer.from_iter([1, 2, 7], 4).to_str()

'100001001110'

Numpy arrays are also supported.

>>> import numpy as np

>>> iter_ = np.arange(8)

>>> BitBuffer.from_iter(iter_, 3).to_str()

'000100010110001101011111'

static from_str(value: str)→ BitBuffer

Create a new BitBuffer and initializes its content with the 1s and 0s in the str value. The order
is left-to-right.

Parameters

value (str) – Bits encoded as "0" and "1" characters from left to right. Characters
contained in " _\t" are ignored and can be used as separators.

Raises

ValueError – If characters are found that are not contained in "01 _\t"

Return type

BitBuffer

Example

>>> BitBuffer.from_str("1100_0000")

BitBuffer(8, 8, 0)

66 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/exceptions.html#ValueError

PYTHON DECODER DEVELOPMENT Analysis Suite

pack(value: int, fmt: str, position: int = 0)→ int

Pack value to BitBuffer with given format.

It is possible to pack an integer value to the BitBuffer instead of using the from_int method.

The pack method has at least two parameters. The first parameter is the value, the second the
format string. Optionally one can define a position in BitBuffer for packing.

Parameters

• value (int) – Integer value to be packed in BitBuffer. If the value is not repre-
sentable with the specified number of bits the upper bits of value are discarded.

• fmt (str) – The format string of pack contains three parts:

– byte order: > or < (the arrow indicates little-endian(<) or big-endian(>) byte
ordering in BitBuffer)

– bit order: > or < (the arrow indicates the first bit form the left(<) or from the
right in BitBuffer)

–size

unsigned: digit(s) (> 0), B (8 bit), H (16 bit), I (32 bit), Q (64 bit)

signed: digit(s) (< 0), b (8 bit), h (16 bit), i (32 bit), q (64 bit)

• position (int, optional) – The index of bit position to get packed bits. The
default is 0.

Returns

Index in bitbuffer one after the last bit with packed bits written.

Return type

int

Raises

ValueError – If BitBuffer has not enough bits after position needed due to specified
format fmt or if format fmt is incorrect.

Notes

Special case if the size is not a multiple of 8. Then the remaining bits (parts of byte) are ignored.

Examples

>>> bb = BitBuffer(16)

>>> bb.pack(0x0123, ">>16") # or ">>H"

>>> bb.to_str()

'0000000100100011'

The following four examples demonstrates the working with different byte and bit ordering.

>>> bb = BitBuffer(16)

>>> bb.pack(0x0123, ">>13")

>>> bb.to_str()

'0000100100011000'

© 2023 PROCITEC GmbH 67 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/exceptions.html#ValueError

Analysis Suite PYTHON DECODER DEVELOPMENT

>>> bb = BitBuffer(16)

>>> bb.pack(0x0123, "<>13")

>>> bb.to_str()

'0010001100001000'

>>> bb = BitBuffer(16)

>>> bb.pack(0x0123, "<<13")

>>> bb.to_str()

'1100010010000000'

>>> bb = BitBuffer(16)

>>> bb.pack(0x0123, "><13")

>>> bb.to_str()

'1000011000100000'

An example with a negative value.

>>> bb = BitBuffer(16)

>>> bb.pack(-0x0123, ">>-13")

>>> bb.to_str()

'0111101101110100'

set_time_info(timestamp , rate , repetition=1 , offset=0)→ None

Set the values of time_info

Parameters

• timestamp (ProTS) – The timestamp of the first bit in the buffer

• rate (float) – Rate in bits per second.

• repetition (int, optional) – number of consecutive bits with identical timest-
samp

• offset (int, optional) – see TimeInfo.offset

Return type

None

split(split_size: int | Sequence[int] , * , reverse: bool = False)→ list[BitBuffer]

Splits the BitBuffer into several BitBuffers and returns them as a list. The returned BitBuffers
are views to a copy of the BitBuffer.

New in version 22.1.0.

Parameters

• split_size (int or Sequence[int]) – If int, the BitBuffer is split into multiple
BitBuffers of size split_size. The size of the BitBuffer has to be a multiple of
split_size`. If a list is given, the BitBuffer is split into multiple BitBuffers of ar-
bitrary lengths given in the list. The sum of the list must be less than or equal to
the size of the BitBuffer and no element in the list is allowed to be 0. An exception
is thrown in case of improper split_size.

• reverse (bool) – If true, each individual returned BitBuffer is bit-reversed. Default
is False.

Return type

list[BitBuffer]

68 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#list

PYTHON DECODER DEVELOPMENT Analysis Suite

Raises

• ValueError – If split_size is of type int: split_size is 0, buffer is empty or size of
the buffer is not a multiple split_size. If split_size is of type Sequence[int]: The
sum of all individual sizes is greater than the size of the buffer or one of the sizes
is 0.

• TypeError – If split_size is of type Sequence[int]: One of the sizes is negative.

Examples

>>> for b in BitBuffer.from_str("100101111").split(3):

>>> print(b)

100

101

111

>>> for b in BitBuffer.from_str("100101111").split([2, 3, 2], reverse=True):

>>> print(b)

01

010

11

>>> b0, b1, b2 = BitBuffer.from_str("100_101_111").split(3)

split_to_array(split_size: int | Sequence[int] , * , reverse: bool = False , signed: bool = False , dtype:
numpy.dtype | None = None)→ numpy.ndarray

Splits the BitBuffer into several ranges, casts them to integer and returns a numpy.ndarray of
these integers.

New in version 23.2.0.

Parameters

• split_size (int | Sequence[int]) – If int, the BitBuffer is split into multiple
ranges of size split_size. The size of the BitBuffer has to be a multiple of
split_size. If a list is given, the BitBuffer is split into multiple ranges of arbi-
trary length given in the list. The sum of the list must be less than or equal to the
size of the BitBuffer and no element in the list is allowed to be 0. An exception is
thrown in case of improper split_size or in case of an empty BitBuffer.

• reverse (bool) – If true, each individual range is bit-reversed before casting to
int. Default is False.

• signed (bool) – If true, the cast is performed signed (two’s complement), else
unsigned. The sign is interpreted before assignment to the array. Signed cast
together with an unsigned array type results into an integer with binary repre-
sentation of the two’s complement value. Default is False.

• dtype (numpy.dtype, optional) – Data type of desired numpy array. All signed
and unsigned types up to 64 bit are allowed (numpy.(u)int8 to numpy.(u)int64)
If dtype is not given, numpy.uint32 is used.

Return type

numpy.ndarray

Raises

© 2023 PROCITEC GmbH 69 of 158

https://docs.python.org/3.11/library/exceptions.html#ValueError
https://docs.python.org/3.11/library/exceptions.html#TypeError
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

• ValueError – If split_size is of type int: split_size is 0, buffer is empty or size of
the buffer is not a multiple split_size. If split_size is of type Sequence[int]: The
sum of all individual sizes is greater than the size of the buffer or one of the sizes
is 0.

• TypeError – If split_size is of type Sequence[int]: One of the sizes is negative.

Examples

>>> BitBuffer.from_str(’100101111').split_to_array(3)

array([1, 5, 7], dtype=uint32)

>>> import numpy as np

>>> BitBuffer.from_str(’100101111').split_to_array(3, dtype=np.int8)

array([1, 5, 7], dtype=int8)

Adds 1 to each 3 bit element in BitBuffer.

>>> buffer = BitBuffer.from_str(’100_101_111')

>>> array = buffer.split_to_array(3)

>>> array = (array + 1) % 8

>>> buffer = BitBuffer.from_int(array, 3)

'010011000'

Notes

This auxiliary function is helpful to interpret binary data as numbers and to calculate with them.
Especially for large or very long arrays it is useful, because calculations with Numpy are usually
much faster than an own implementation in Python.

split_to_int(split_size: int | Sequence[int] , * , reverse: bool = False , signed: bool = False)→
list[int]

Splits the BitBuffer into several ranges, casts them to integer and returns a list of these integer.

New in version 22.1.0.

Parameters

• split_size (int | Sequence[int]) – If int, the BitBuffer is split into multiple
ranges of size split_size. The size of the BitBuffer has to be a multiple of
split_size. If a list is given, the BitBuffer is split into multiple ranges of arbi-
trary length given in the list. The sum of the list must be less than or equal to the
size of the BitBuffer and no element in the list is allowed to be 0. An exception is
thrown in case of improper split_size or in case of an empty BitBuffer.

• reverse (bool) – If true, each individual range is bit-reversed before casting to
int. Default is False.

• signed (bool) – If true, the cast is performed signed (two’s complement), else
unsigned. Default is False.

Return type

list[int]

Raises

70 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/exceptions.html#ValueError
https://docs.python.org/3.11/library/exceptions.html#TypeError
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

• ValueError – If split_size is of type int: split_size is 0, buffer is empty or size of
the buffer is not a multiple split_size. If split_size is of type Sequence[int]: The
sum of all individual sizes is greater than the size of the buffer or one of the sizes
is 0.

• TypeError – If split_size is of type Sequence[int]: One of the sizes is negative.

Examples

>>> BitBuffer.from_str(’100101111').split_to_int(3)

[1, 5, 7]

>>> BitBuffer.from_str('100101111').split_to_int([2, 3, 2], reverse=True)

[2, 2, 3]

>>> BitBuffer.from_str('110101111').split_to_int([3, 3, 2], signed=True)

[3, -3, -1]

>>> packet = BitBuffer.from_str('1101 0111 1')

>>> parameter0, parameter1, flag0 = packet.split_to_int([4, 4, 1])

>>> print(parameter0, parameter1, flag0)

11 14 1

Notes

This utility function is helpful when unpacking packets or headers with the same or different
field sizes.

time(position: int = 0)→ ProTS

Get timestamp of bit at the specified position. Note, that consecutive bits may have the same
timestamp, e.g. if they were transmitted within a single multi-bit symbol.

Parameters

position (int) – The index of bit to get the timestamp

Return type

ProTS

to_bytes(length: int | None = None , byteorder: str = 'little')→ bytes

Converts the BitBuffer into bytes. This gives the same results as converting to an integer and
then to bytes.

New in version 22.2.0.

Parameters

• length (int, optional) – Specifies the size of the resulting byte object. An error
is raised if this size is not sufficient to store the BitBuffer. If not specified, the
minimum number of bytes is used.

• byteorder (str) – Endianness of the bytes.

Return type

bytes

© 2023 PROCITEC GmbH 71 of 158

https://docs.python.org/3.11/library/exceptions.html#ValueError
https://docs.python.org/3.11/library/exceptions.html#TypeError
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#bytes

Analysis Suite PYTHON DECODER DEVELOPMENT

Examples

>>> BitBuffer.from_int(0x123f).to_bytes()

b'?\x12'

>>> BitBuffer.from_int(0x123f).to_bytes(byteorder="big")

b'\x12?'

>>> BitBuffer.from_int(0x123f).to_bytes(10)

b'?\x12\x00\x00\x00\x00\x00\x00\x00\x00'

to_int(signed: bool = False)→ int

Converts the BitBuffer into an int. Bits are interpreted LSB-first. Default behaviour, or if signed
parameter is set to false data is considered unsigned. If data is to be interpreted signed, see
the following optional parameter. This function returns 0 when called on an empty BitBuffer
(size == 0).

Parameters

signed (bool, optional) – If true, interpret bitbuffer data as signed and return
respective integer value as such. If false, interpret bitbuffer data as unsigned.

New in version 21.2.0.

Return type

int

Example

>>> bb = BitBuffer.from_str("1101")

>>> bb.to_int()

11

>>> bb.to_int(signed=True)

-5

Notes

It is possible to use the builtin int for this.

>>> bb = BitBuffer.from_str("1101")

>>> int(bb)

11

to_str(truncate: int = 0)→ str

Get string representation of bits. The bit at index 0 is first.

Parameters

truncate (int, optional) – If greater than 0, the string representation is trun-
cated so that it contains only the first truncate bits.

Return type

str

72 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str

PYTHON DECODER DEVELOPMENT Analysis Suite

unpack(fmt: str, position: int = 0)→ int

Unpack value from BitBuffer with given format.

It is possible to unpack an integer value from the BitBuffer instead of using the to_int method.

Parameters

• fmt (str) – The format string of unpack contains three parts:

– byte order: > or < (the arrow indicates little-endian(<) or big-endian(>) byte
ordering in BitBuffer)

– bit order: > or < (the arrow indicates to the first bit form the left(<) or from the
right in BitBuffer)

–size

signed: digit (value 1 to 64), B (8 bit), H (16 bit), I (32 bit), Q (64 bit)

unsigned: digit (value -64 to -1), b (8 bit), h (16 bit), i (32 bit), q (64 bit)

Additional formats for unpack for interpretion as signed values:

• position (int) – The index of bit position to get unpacked bits.

Returns

Unpacked value

Return type

int

Examples

>>> bb = bitbuffer.BitBuffer(40)

>>> bb.pack(0x69, "<<B", position=0)

8

>>> hex(bb.unpack("<<B", position=0))

'0x69'

Alternatively one can get the content as signed value.

>>> bb = bitbuffer.BitBuffer(40)

>>> bb.pack(0x96, ">>B", position=0)

8

>>> bb.unpack(">>B", position=0)

150

>>> bb.unpack(">>b", position=0)

-106

Instead of a letter in the format string one can use a digit, which defines the number of bits for
packing and unpacking.

>>> bb = bitbuffer.BitBuffer(40)

>>> bb.pack(0x96, ">>5", position=0)

5

>>> hex(bb.unpack(">>5", position=0))

'0x16'

© 2023 PROCITEC GmbH 73 of 158

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

property capacity

Max number of bits this BitBuffer can hold

Type

int

property data

Access raw memory of BitBuffer

Type

memoryview

property offset

Number of bits to ignore from the underlying byte memory

Type

int

property quality

quality information, if available

property size

Number of bits in this BitBuffer

Type

int

property soft_bits

soft bits, if available

property time_info

Returns the TimeInfo

Type

TimeInfo

The following class holds the information necessary to compute timestamps for individual bits. While the
terminology is avoided here, these fields are inspired by bits originating from a transmission of symbols
describing multiple bits. That is why consecutive bit positions may report the same timestamp.

class procitec.common.bitbuffer.TimeInfo

property bitrate

Rate in bits per second.

Type

float

property offset

Offset in range 0 to repetition - 1. Indicates if the first bit in the BitBuffer does not correspond
to the first bit of a group with identical timestamps (see also repetition).

Type

int

property repetition

Repetition factor, if repetition consecutive bits have an identical timestamp.

Type

int

74 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#memoryview
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

property timestamp

Timestamp corresponding to the first bit in the BitBuffer.

Type

ProTS

2.2.2. BitStream

This class handles a stream of bit-level data. Main usage within decoders is as interface to access the
demodulator output, apc.data. This uses an internal buffer which is filled by the runtime with chunks of
demodulated bits. Reading data from the stream may trigger the runtime to request more data behind the
scenes.

The current position within the stream is always absolute, starting with the first incoming bit. Reading from
the stream moves the position forward, allowing the runtime to load more data from the demodulator.
In addition, it is possible to access data without changing the position, which may be required for the
detection of the transmission format (trial and error).

class procitec.common.bitbuffer.BitStream(buffer)

A class which implements a stream like behaviour on a BitBuffer

Each read() call remembers the new position in the bit stream and continues accordingly.

__iter__()

Return an iterator for each individual bit in the bit stream

__str__()

Return str(self).

bit_rate(position: int | None = None)→ float | None

Get bit rate at given absolute position if available.

New in version 24.1.0.

Parameters

position (int, optional) – If None (default) the bit rate at the current position is
returned; otherwise the bit rate at the requested absolute position

Returns

bit rate (1/s) if available, None otherwise.

Return type

float | None

consume(num_bits)

Consume (skip) bits in the stream

Parameters

num_bits (int) – Number of bits to consume (to skip)

iter_read(size , channel_index=0)

Return an iterator for the bit stream reading a specific number of bits from a channel

Parameters

• size (int) – Number of bits to read in each iteration

• channel_index (int, optional) – Index of the channel to read from

© 2023 PROCITEC GmbH 75 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

peek(size=None , * , channel_index=0 , include_quality=False)

Peek into the bit stream

Peek into the stream (read from the stream) without consuming any data, i.e. the position in the
stream is not modified.

This is the underlying function for read().

Parameters

• size (int, optional) – Number of bits to peek. If None (default), available bits
are peeked.

• channel_index (int, optional) – Index of the channel to peek into

• include_quality (bool, optional) – Add quality information for each bit

Raises

EndOfStreamError – If the requested number of bits can not be returned. This
means the stream has been closed and data remaining in internal buffer is not suf-
ficient.

Returns

the requested bits

Return type

BitBuffer

read(size=None , * , channel_index=0 , include_quality=False)

Read bits from bit stream. This is equivalent to a peek() combined with a consume().

Parameters

• size (int, optional) – Number of bits to read. If None (default), available bits
are read.

• channel_index (int, optional) – Index of the channel to read from. Note that
bits on all other channels are consumed.

• include_quality (bool, optional) – Add quality information for each bit

Raises

EndOfStreamError – If the requested number of bits can not be returned. This
means the stream has been closed and data remaining in internal buffer is not suf-
ficient.

Returns

the requested bits

Return type

BitBuffer

rewind(num_bits: int)→ None

Rewind the bit stream by a given amount of bits

Parameters

num_bits (int) – Number of bits to go back in the bit stream

Raises

RewindError – If the requested num_bits exceeds the buffered data length

76 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

set_position(position: int)→ int

Set position in the bit stream to an absolute value

This is equivalent to calling rewind() if the new position is smaller than the current position
respectively to calling consume() if the new position is larger than the current.

Note that if new position is beyond current end of buffer only available bits will be consumed
and thus not trigger the runtime to request new data.

No action is performed if current and new position are equal.

Parameters

position (int) – Absolute position in the bit stream to jump to

Returns

The new position in the bitstream. This position can differ from the requested value
if the requested position is beyond the currently available bits in the buffer.

Return type

int

Raises

• RewindError – If the requested position can not be reached because it is to far in
the past

• EndOfStreamError – If the requested position can not be reached because it is
past the end of the input data stream

time(position: int | None = None)→ ProTS

Get timestamp at given absolute position

Parameters

position (int, optional) – If None (default) the timestamp at the current position
is returned; otherwise the timestamp at the requested absolute position

Returns

Timestamp

Return type

ProTS

property available

Number of bits that can be read without blocking

Type

int

property channels

Number of channels

Type

int

property closed

True if the stream is closed

Type

bool

© 2023 PROCITEC GmbH 77 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

property inverted

True if read bit are inverted

Type

bool

property position

Position in the stream, i.e. the index of the next bit to be read

Type

int

exception procitec.common.bitbuffer.RewindError

Raised if BitStream.rewind() or BitStream.set_position() fails

exception procitec.common.bitbuffer.EndOfStreamError

Raised from BitStream.read() and BitStream.peek() if more data is requested than can ever be
made available.

exception procitec.common.bitbuffer.BitStreamError

Common base class of EndOfStreamError and RewindError.

2.2.3. Helper Functions

procitec.common.bitbuffer.mean_quality(data , size , channel_index=0 , past=False)

Calculate mean quality of either a BitBuffer or a BitStream. In case a BitStream is passed to this
function, channel_index, size` and past must be passed as well. Parameter channel_index will be
ignored in case of APCGateway input stream if input_channel_mode is configured as interleaved (=
default). In case a BitBuffer is provided, channel_index, size and past must not be passed. Slicing
is supported for BitBuffer.

New in version 21.1.0.

Parameters

• data (BitStream or BitBuffer) – Input data type of which mean quality shall be
calculated.

• size (int) – Size of bitstream data in bits, beginning at current read pointer posi-
tion, of which the mean quality shall be calculated. Must not be passed, if data is
of type BitBuffer.

• channel_index (int, optional) – Channel index of BitStream of which mean qual-
ity shall be calculated (default = 0). Must not be passed, if data is of type Bit-

Buffer or using APCGateway input stream with configuration interleaved.

• past (bool, optional) – If True the bits before the read_pointer are used. If there
are not enough bits the calculation length is truncated. Returns 0.0 if there are no
bits available in the past. Must not be passed, if data is of type BitBuffer.

Raises

RewindError – If data is of type BitStream, past is True and the requested size ex-
ceeds the buffered data length.

Returns

• Mean quality of all passed BitBuffer values, in case data is a BitBuffer.

• Mean quality of BitStream values, as defined by size, channel_index and past.

78 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool

PYTHON DECODER DEVELOPMENT Analysis Suite

procitec.common.bitbuffer.convert_symbols(data , * , conv_dict , symbol_size_in ,
symbol_size_out=None , replacement=0 ,
msb_first=False)→ BitBuffer

Convert symbols of a BitBuffer as described in python dictionary conv_dict. Slicing is supported
for BitBuffer.

Note: The size of data must be an integer multiple of symbol_size_in.

New in version 21.2.0.

Parameters

• data (BitBuffer) – Input data of which symbols shall be converted.

• conv_dict (dict(int, int)) – Python dictionary specifying input and output sym-
bol mapping. Where dictionary keys represent input symbols, and values represent
the respective output symbol. The dictionary does not have to cover all possible
symbols but can contain any arbitrary number of key/value pairs <= 2symbol_size_in.
Symbols within data which are not found in conv_dict will therefore be converted
as given by replacement.

• symbol_size_in (int) – Describes the amount of bits in data that shall be inter-
preted as one symbol.

• symbol_size_out (int, optional) – Describes the amount of bits that each out-
put symbol will cover in the resulting output BitBuffer. Make sure that this value
fits the required amount of bits needed for conv_dict output symbols. If no value
is given, symbol_size_out is assumed to be equal to symbol_size_in.

• replacement (int, optional) – This value will be put into the output BitBuffer
in place for an input symbol in data which could not be found in conv_dict listed
input symbols (default = 0).

• msb_first (bool, optional) – This flag specifies the bit-endianness of which each
input symbol of data shall be interpreted. If this parameter is not specified (default
= False), input symbols are interpreted as LSBit first.

Return type

BitBuffer with converted symbols as given by data.

Examples

Swap symbol ‘3’ with ‘2’:

>>> from procitec.common.bitbuffer import BitBuffer, convert_symbols

>>> input = BitBuffer.from_str('00100111') # 0,1,2,3

>>> # convert '11' to '01' and '01' to '11' (3 => 2 and 2 => 3)

>>> output = convert_symbols(input, conv_dict={0:0, 1:1, 2:3, 3:2}, symbol_size_

↪→in=2)

>>> print(f"in: {input}\nout: {output}\nxor: {input ^ output}")

in: 00100111

out: 00101101

xor: 00001010

© 2023 PROCITEC GmbH 79 of 158

https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

procitec.common.bitbuffer.concat(*args)→ BitBuffer

Concatenate multiple BitBuffers.

Parameters

*args (BitBuffer) – Variable length argument list.

Return type

BitBuffer

procitec.common.bitbuffer.insert(buffer , position , new_data)

Inserts a BitBuffer into a another BitBuffer at given position. Existing bits are shifted to the right.

Parameters

• buffer (BitBuffer) – existing data

• position (int) – position where to insert the new data

• new_data (BitBuffer) – new data to be inserted

Examples

>>> from procitec.common.bitbuffer import BitBuffer, insert

>>> buffer = BitBuffer.from_str('00100111')

>>> insert(buffer, 2, BitBuffer.from_str("11"))

>>> print(buffer)

00111001

procitec.common.bitbuffer.reverse_symbol_order(buffer , bits_per_symbol)→ BitBuffer

Reverse the order of arbitrary sized symbols in the BitBuffer and all its shadow buffers. BitBuffer size
has to be integer multiple of number of bits per symbol. Meta information is removed.

Parameters

• buffer (BitBuffer) – existing data

• bits_per_symbol (int) – position where to insert the new data

Return type

BitBuffer

Examples

Reverse the ordering of 3bit symbols

>>> from procitec.common.bitbuffer import BitBuffer, reverse_symbol_order

>>> buffer = BitBuffer.from_str('001 001 111 000')

>>> print(reverse_symbol_order(buffer,3))

000111001001

80 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

procitec.common.bitbuffer.mirror_symbols(buffer , bits_per_symbol)

Reverses the order of bits within arbitrary sized symbols in a BitBuffer and all its shadow buffers.
BitBuffer size has to be an integer multiple of number of bits per symbol. Meta information is
removed.

New in version 21.1.0.

Parameters

• buffer (BitBuffer) – Input data. Size has to be an integer multiple of number of
bits per symbol.

• bits_per_symbol (int) – Size of one symbol in bits.

Return type

BitBuffer

Examples

reverse bit ordering in bytes

>>> from procitec.common.bitbuffer import BitBuffer, mirror_symbols

>>> buffer = BitBuffer.from_str('00100111 10100111')

>>> print(mirror_symbols(buffer,8))

1110010011100101

procitec.common.bitbuffer.invert(buffer , ranges)

Invert all bits inside given ranges of bitbuffer.

Parameters

• buffer (BitBuffer) – Input data

• ranges (list) – Defines ranges of bits which should be inverted.

Examples

>>> from procitec.common.bitbuffer import BitBuffer, invert

>>> buffer = BitBuffer.from_str('00100111')

>>> invert(buffer, [[1,2],[5,6]])

>>> print(buffer)

01000001

2.2.4. Shift Operations

These mirror the shift operators defined for BitBuffer objects with additional parameters to perform e.g.
cyclic shifting.

© 2023 PROCITEC GmbH 81 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list

Analysis Suite PYTHON DECODER DEVELOPMENT

procitec.common.bitbuffer.rshift(buffer , shift , * , circular=False , include_meta_info=True)→
BitBuffer

Shifts specified number of bits to the right, returning result in a new BitBuffer Optionally as circular
operation and excluding meta information.

Parameters

• buffer (BitBuffer) – Input data

• shift (int) – number of bits to be shifted

• circular (bool, optional) – If True then the shift operation is circular, i.e. bits
dropping out on the right will be inserted at the left.

• include_meta_info (bool, optional) – If False then any metadata (e.g. quality)
is discarded.

Return type

BitBuffer

procitec.common.bitbuffer.rshift_inplace(buffer , shift , * , circular=False , include_meta_info=True)

Shifts specified number of bits to the right in the given BitBuffer. Optionally as circular operation
and excluding meta information.

Parameters

• buffer (BitBuffer) – Input data

• shift (int) – number of bits to be shifted

• circular (bool, optional) – If True then the shift operation is circular, i.e. bits
dropping out on the right will be inserted at the left.

• include_meta_info (bool, optional) – If False then any metadata (e.g. quality)
is discarded.

procitec.common.bitbuffer.lshift(buffer , shift , * , circular=False , include_meta_info=True)→
BitBuffer

Shifts specified number of bits to the left, returning result in a new BitBuffer Optionally as circular
operation and excluding meta information.

Parameters

• buffer (BitBuffer) – Input data

• shift (int) – number of bits to be shifted

• circular (bool, optional) – If True then the shift operation is circular, i.e. bits
dropping out on the left will be inserted at the right.

• include_meta_info (bool, optional) – If False then any metadata (e.g. quality)
is discarded.

Return type

BitBuffer

82 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool

PYTHON DECODER DEVELOPMENT Analysis Suite

procitec.common.bitbuffer.lshift_inplace(buffer , shift , * , circular=False , include_meta_info=True)

Shifts specified number of bits to the left in the given BitBuffer. Optionally as circular operation
and excluding meta information.

Parameters

• buffer (BitBuffer) – Input data

• shift (int) – number of bits to be shifted

• circular (bool, optional) – If True then the shift operation is circular, i.e. bits
dropping out on the left will be inserted at the right.

• include_meta_info (bool, optional) – If False then any metadata (e.g. quality)
is discarded.

2.2.5. Bitwise Operations

It is recommended to use directly the operators &,|,^,! (=&,=|,=^,=! for the inplace operations). Slicing
can be used to emulate the additional parameters offset and size.

Will be removed in future versions.

Deprecated since version 23.2.0.

procitec.common.bitbuffer.bitwise_and(lhs , rhs , * , offset , size , include_meta_info=True)

Bitwise AND operation of two BitBuffers or a BitBuffer and an int, returning the result in a new Bit-
Buffer

Parameters

• lhs (BitBuffer or int) –

• rhs (BitBuffer or int) –

• offset (int) –

• size (int) –

• include_meta_info (bool) – Disable copying of meta information to returned Bit-
Buffer

Return type

BitBuffer

Notes

It is recommended to use directly the operator &.Will be removed in future versions.

Deprecated since version 23.2.0.

procitec.common.bitbuffer.bitwise_iand(lhs , rhs , * , offset , size)

Bitwise in-place (lhs is modified) AND operation of two BitBuffers or a BitBuffer and an int

Parameters

• lhs (BitBuffer or int) –

• rhs (BitBuffer or int) –

• offset (int) –

• size (int) –

© 2023 PROCITEC GmbH 83 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

Return type

BitBuffer

Notes

It is recommended to use directly the operators =&.Will be removed in future versions.

Deprecated since version 23.2.0.

procitec.common.bitbuffer.bitwise_or(lhs , rhs , * , offset , size , include_meta_info=True)

Bitwise OR operation of two BitBuffers or a BitBuffer and an int, returning the result in a new BitBuffer

Parameters

• lhs (BitBuffer or int) –

• rhs (BitBuffer or int) –

• offset (int) –

• size (int) –

• include_meta_info (bool) – Disable copying of meta information to returned Bit-
Buffer

Return type

BitBuffer

Notes

It is recommended to use directly the operator |.Will be removed in future versions.

Deprecated since version 23.2.0.

procitec.common.bitbuffer.bitwise_ior(lhs , rhs , * , offset , size)

Bitwise in-place (lhs is modified) OR operation of two BitBuffers or a BitBuffer and an int

Parameters

• lhs (BitBuffer or int) –

• rhs (BitBuffer or int) –

• offset (int) –

• size (int) –

Return type

BitBuffer

84 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

Notes

It is recommended to use directly the operators =|.Will be removed in future versions.

Deprecated since version 23.2.0.

procitec.common.bitbuffer.bitwise_xor(lhs , rhs , * , offset , size , include_meta_info=True)

Bitwise XOR operation of two BitBuffers or a BitBuffer and an int, returning the result in a new Bit-
Buffer

Parameters

• lhs (BitBuffer or int) –

• rhs (BitBuffer or int) –

• offset (int) –

• size (int) –

• include_meta_info (bool) – Disable copying of meta information to returned Bit-
Buffer

Return type

BitBuffer

Notes

It is recommended to use directly the operator ^.Will be removed in future versions.

Deprecated since version 23.2.0.

procitec.common.bitbuffer.bitwise_ixor(lhs , rhs , * , offset , size)

Bitwise in-place (lhs is modified) XOR operation of two BitBuffers or a BitBuffer and an int

Parameters

• lhs (BitBuffer or int) –

• rhs (BitBuffer or int) –

• offset (int) –

• size (int) –

Return type

BitBuffer

Notes

It is recommended to use directly the operators =^.Will be removed in future versions.

Deprecated since version 23.2.0.

© 2023 PROCITEC GmbH 85 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

2.3. Decoding Library

This is the documentation for the Python module procitec.decoding.

This module contains functions and classes to perform common decoding tasks. These can be categorized
into Synchronisation and Search , Error Correction and Detection and other Utilities , that ease reoccurring
tasks.

Most of the functionality aims to be generic and works as building-blocks to decode bit-level transmissions
of various types of complexity. Some of these need to keep state between invocations or require non-trivial
computation to be initialized. In these cases a class, rather than a plain function, is provided - even if it
has only a single method. This gives control over of the scope where state is kept and avoids the overhead
of initialization when used many times.

All of the objects types from the bitbuffer module are used as primary bit-level data input and output
format. Algorithms working with soft metrics use multi-dimensional arrays provided by the Python package
numpy for symbol-level data. Conversion bit-level soft metrics, however, results in BitBuffer objects
with the soft-bit values stored as meta-data in BitBuffer.soft_bits. This way consuming functions, like
ViterbiDecoder can easily switch behavior.

• Synchronisation and Search

• Error Correction and Detection

• Burst Operations

• Pre-Processing

– Bit-Level Pre-Processing

– Symbol-Level Pre-Processing

– Utilities

• Alphabets

• Utilities

• File Output Helpers

• Bit Formatting

• Miscellaneous

2.3.1. Synchronisation and Search

The functions here are used in many decoders to acquire the position of known or repeated patterns within
the incoming data stream. Therefore they read directly from the input stream, reading and consuming
data as needed.

Both the number of bits to be searched, the max_offset and the maximum number of bit errors can be
specified to control the behavior of search runs. It is advised to choose a sensible max_offset and loop
over multiple search calls. This allows reporting the decoders state between executions of search meth-
ods, see procitec.decoding.runtime.SearchStateHandler.

To search for different patterns in parallel, the search functions can be instructed not to consume data
from the input stream. Subsequent searches run off the same position. The logic for looping over patterns
and choosing an acceptable result needs to be implemented by the user.

86 of 158 © 2023 PROCITEC GmbH

https://www.nunmpy.org/

PYTHON DECODER DEVELOPMENT Analysis Suite

procitec.decoding.search_pattern(data , pattern , mask , * , repetitions=1 , max_errors=0 ,
max_offset=None , auto_invert=False , consume_searched=True)

Search for a certain bit pattern in the input stream

Parameters

• data (BitStream) – Input stream where the pattern is to be searched

• pattern (str or BitBuffer) – A string or a bit buffer describing the bit pattern to
search.

If a string is passed, relevant bit position, i.e. bits which must be set or cleared,
are denoted with 1 respectively 0. Bits which may take any value (“don’t care”) are
denoted with x or X. Any other value in the string is ignored.

• mask (BitBuffer) – A 1 in the mask denotes that the corresponding bit in pattern

must be present; a 0 denotes that the corresponding bit may take any value (“don’t
care”).

Must not be passed if pattern is a string.

Changed in version 22.1.0.

If pattern is a BitBuffer, mask can be omitted. In this case mask is evaluated as if
all bits of mask are 1, or in other words: Each bit in pattern counts.

• repetitions (int, optional) – search for pattern repeated repetitions times
(default 1 repetition)

• max_errors (int, optional) – Tolerate up to max_errors bit errors (default 0),
i.e. maximum allowed Hamming distance between the repeated pattern and the
pattern found in data.

• max_offset (int, optional) – Maximum offset, until which the search is performed,
i.e this is the furthermost offset, where a pattern can be found. If None (default),
the search range is only limited by data and if no pattern is found the search won’t
be aborted until data ends (see EndOfDataError).

• auto_invert (bool, optional) – If True, a search with inverted data (see BitStream.
inverted) is executed as well. The first match within the limits is considered as
result, i.e. the smallest offset for which the number of errors is less or equal
max_errors. If at this offset, both, the number of errors for the non-inverted and
inverted search are less or equal max_errors, the non-inverted match is consid-
ered as result. If a inverted search is successful, the stream’s inverted property is
toggled.

False by default.

• consume_searched (bool, optional) – If True (default), the searched bits in data

are consumed.

If the pattern is found:

SearchResult.offset bits are consumed, i.e. data.position is at the first bit
of the found pattern.

If the search is aborted:

data is consumed so that data.position equals the first offset, where the search
would have been continued. This means if the search has been aborted due to
max_offset, exactly max_offset + 1 bits are consumed.

Returns

The result of the search: first match considering also max_errors

© 2023 PROCITEC GmbH 87 of 158

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

Return type

SearchResult

Notes

The hard decision search_pattern() command returns first match, the soft decision search_pattern_soft()

returns best match. Therefore the search results may be drastically different when replacing hard
decision processing with soft decision.

If the pattern to be found is very long and contains too many “don’t care” bits in relation to the known
bits and repetitions is small then it might be better to use the function bit_correlation_and_maxima().

procitec.decoding.search_alphabet(data , alphabet , * , repetitions , max_bit_errors ,
max_offset=None , auto_invert=False , sign_pattern=None ,
interleaving=None , consume_searched=True)

Search for an arbitrary sequence of codewords defined in an Alphabet.

Parameters

• data (BitStream) – bit sequence to be searched on

• alphabet (Alphabet) – Defines valid codewords to consider in search. Only an
Alphabet with a fixed-length code is supported.

• repetitions (int) – length of the codeword sequence to search

• max_bit_errors (int) – Total allowed number of bit errors in the found sequence
compared to a valid one, i.e. the maximum allowed Hamming distance between the
found sequence and a valid one. The number of permitted bit errors per codeword

is limited to

⌊
max_bit_errors + codeword_repetitions− 1

codeword_repetitions

⌋
• max_offset (int, optional) – Maximum offset, until which the search is performed,

i.e this is the furthermost offset, where a pattern can be found. If None (default),
the search range is only limited by data and if no pattern is found the search won’t
be aborted until data ends (see EndOfDataError).

• auto_invert (bool, optional) – If True, a search with inverted data (see BitStream.
inverted) is executed as well. The first match within the limits is considered as
result, i.e. the smallest offset for which the number of errors is less or equal
max_bit_errors. If at this offset, both, the number of errors for the non-inverted
and inverted search are less or equal max_bit_errors, the match with less er-
rors is considered as result. If both have equal number of errors, the non-inverted
match is considered as result. If an inverted search is successful, the stream’s
inverted property is toggled.

False by default.

• sign_pattern (int, optional) – Enables search with varying inversion of code-
words if not None (the default is None): For every bit set in sign_pattern the corre-
sponding codeword in data is inverted before comparison with valid codewords in
alphabet.

This option is only available for repetitions <= 64.

This option is not available if the parameter interleaving is used.

• interleaving (tuple(int, int), optional) – Search assuming bit-interleaved
data. See extract_interleaved().

This option is not available if the parameter sign_pattern is used.

88 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

• consume_searched (bool, optional) – If True (default), the searched bits in data

are consumed.

If the pattern is found:

SearchResult.offset bits are consumed, i.e. data.position is at the first bit
of the found pattern.

If the search is aborted:

data is consumed so that data.position equals the first offset, where the search
would have been continued. This means if the search has been aborted due to
max_offset, exactly max_offset + 1 bits are consumed.

Returns

The result of the search

Return type

SearchResult

procitec.decoding.search_lfsr_sequence(data: BitStream, poly: BitBuffer | int, length: int, * ,
max_errors: int = 0 , max_offset: int | None = None ,
auto_invert: bool = False , consume_searched: bool =
True)

Search for a sequence generated by an linear feedback shift register (LFSR).

Linear feedback shift registers are defined by polynomials of order n with binary coefficients ci :

p(x) = 1+
n∑
i=1

cix
i

An example for the LFSR with the polynomial 1+ x5 + x9 is given below.

operating principle

• For each bit position window_length bits are considered from the input data. A check is
performed on these bits to determine whether they match with a LFSR sequence with a
given maximum number of errors. If so, the search is terminated with a positive result. If
not, the next bit position is considered.

• When checking a single bit position, the polynomial is applied window_length - polyno-

mial_length + 1 times to the window of window_length bits. The error count is then com-
pared to the maximum error count.

• A single bit error in the input data can lead to multiple errors in the search, depending on
poly.

New in version 24.1.0.

Parameters

• data (BitStream) – bit sequence to be searched on

• poly (BitBuffer | int) – Polynomial of the LFSR as a bit mask where the least
significant bit corresponds to the coefficient of exponent 0. The coefficient for ex-
ponent 0 must be present. The position of the highest bit set (zero based counting)
corresponds to n. The search for a polynomial with a length of up to 256 bit is
supported.

© 2023 PROCITEC GmbH 89 of 158

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

• window_length (int) – Length of the search window to search for the LFSR se-
quence. Has to be >= the length of the polynomial (to perform a least one check).
Maximum is 65536.

• max_errors (int) – Total allowed number of errors in the found sequence. A single
bit error in the input data normally leads to multiple errors in the search. Default
is 0.

• max_offset (int, optional) – Maximum offset, until which the search is performed,
i.e this is the furthermost offset, where a LFSR sequence can be found. If None (de-
fault), the search range is only limited by data and if no LFSR sequence is found
the search won’t be aborted until data ends (see EndOfDataError).

• auto_invert (bool, optional) – If True, a search with inverted data (see BitStream.
inverted) is executed as well. The first match within the limits is considered as
result, i.e. the smallest offset for which the number of errors is less or equal
max_errors. If at this offset, both, the number of errors for the non-inverted and
inverted search are less or equal max_errors, the match with less errors is con-
sidered as result. If both have equal number of errors, the non-inverted match is
considered as result. If an inverted search is successful, the stream’s inverted

property is toggled.

False by default.

• consume_searched (bool, optional) – If True (default), the searched bits in data

are consumed.

If the LFSR sequence is found:

SearchResult.offset bits are consumed, i.e. data.position is at the first bit
of the found sequence.

If the search is aborted:

data is consumed so that data.position equals the first offset, where the search
would have been continued. This means if the search has been aborted due to
max_offset, exactly max_offset + 1 bits are consumed.

Returns

The result of the search

Return type

SearchResult

Raises

ValueError – If the polynomial is inappropriate or window_length is too short.

Notes

If a LFSR sequence is embedded within some other data, the search may not found a bit position with
the exact bit offset but one in front of it with some errors, especially in case of max_errors > 0. This
is the correct behaviour of the algorithm.

Example

Generate a sequence of length 100 using the polynomial x9 + x5 + 1. This sequence is placed in a
random bitbuffer of length 200 at offset 42. A search for the sequence is performed.

90 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/exceptions.html#ValueError

PYTHON DECODER DEVELOPMENT Analysis Suite

1 import random

2

3 from procitec.common.bitbuffer import BitBuffer, BitStream

4 from procitec.decoding import generate_lfsr_sequence, search_lfsr_sequence

5

6 l = 200

7 n = 100

8 poly = 0x221

9

10 random.seed(1)

11 random_bits = BitBuffer.from_int(random.randint(0, 2**l - 1), l)

12 random_bits[42:142] = generate_lfsr_sequence(poly, initial_state=123, length=n)

13 search_result = search_lfsr_sequence(BitStream(random_bits), poly, 70, max_

↪→errors=0)

14 print(search_result)

>>> found: True, offset: 42, bit_errors: 0

class procitec.decoding.SearchResult

Result returned by search_pattern() and search_alphabet()

__bool__()

same value as found

property errors

If found is True, number of bit errors in the found sequence, i.e. the Hamming distance between
the searched pattern and the found pattern in the given data; otherwise undefined.

Type

int

property found

True if the search has been successful, False otherwise.

Type

bool

property offset

If found is True, offset at which the pattern has been found, otherwise undefined.

Type

int

procitec.decoding.search_pattern_soft(data , pattern , * , sample_format=MAG_PHASE ,
bits_per_symbol , method='phase' , range ,
max_symbol_errors , consume_searched=True)

Searches for a symbol pattern in the input buffer by comparing corresponding nominal and input soft
symbols. The position found is not the first matching pattern, but the best based on an error metric.

Parameters

• data (SymbolStream or array_like) – Input stream or buffer where the pattern is
to be searched. A buffer has to satisfy the Python Buffer Protocol (https://docs.
python.org/3/c-api/buffer.html) and should be a NumPy array. It is possible to
cast symbols read from a SymbolStream to a NumPy array. See examples below.

© 2023 PROCITEC GmbH 91 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3/c-api/buffer.html
https://docs.python.org/3/c-api/buffer.html

Analysis Suite PYTHON DECODER DEVELOPMENT

• pattern (list(tuple(float, float)) or array_like) – The symbol pattern to
search for. A buffer (NumPy-Array) should be preferred because it is faster, espe-
cially for long patterns. See examples below.

• sample_format (SampleFormat, optional) – The format of symbols in data and
pattern. Has to be MAG_PHASE or FSK. If the type of data is SymbolStream, this
option is ignored and the sample format defined within the symbol stream is used.

For MAG_PHASE, the method has to be 'phase' or 'euclid'.

For FSK, the method has to be 'fsk'.

• bits_per_symbol (int) – Number of bits per symbol. This value is used to deter-
mine the presence of a symbol error.

• method (str, optional) – Method for symbol error and error metric calculation.
One of the following:

– 'phase': based on phase difference, magnitude ignored

– 'euclid': based on euclidean distance

– 'fsk': based on absolute symbol distance

• range (int) – Length of search range in number of symbols. The search range must
cover the maximum search offset plus the length of the pattern. This means, the
furthermost offset, where a pattern can be found is exactly at range minus length
of pattern.

• max_symbol_errors (int) – Maximum number of symbol faults allowed for a suc-
cessful search.

• consume_searched (bool, optional) – If True (default), the searched symbols in
data are consumed, except if data is not a class:SymbolStream, in this case this
argument is ignored.

If the pattern is found:

SearchPatternSoftResult.offset symbols are consumed, i.e. data.position
is at the first symbol of the found pattern.

If the search is aborted:

data is consumed so that data.position equals the first offset, where the search
would have been continued. This means if the search has been aborted due to
the range, exactly range - len(pattern) + 1 bits are consumed, where len(pattern)
equals the length of pattern.

Returns

The result of the search: best match within the range considering max_symbol_errors

Return type

SearchPatternSoftResult

Examples

We want so search for a 4-symbol QPSK preamble which could be defined with a list or with a NumPy
array. The symbols are given in MAG_PHASE format.

92 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool

PYTHON DECODER DEVELOPMENT Analysis Suite

>>> from procitec.decoding import search_pattern_soft

>>> import numpy as np

>>> pattern_list = [(1, 0), (1, 0), (1, np.pi), (1, np.pi/2)]

>>> pattern_numpy_float = np.array(pattern_list, dtype=np.float32)

>>> pattern_numpy_uint16 = np.array([(2**15, 0), (2**15, 0), (2**15, 2**15),�
↪→(2**15, 2**14)], dtype=np.uint16)

These pattern variables are equivalent in search_pattern_soft().

>>> for p in pattern_list, pattern_numpy_float, pattern_numpy_uint16:

>>> print(search_pattern_soft(apc.symbols, p, method="euclid", bits_per_

↪→symbol=2, range=200, max_symbol_errors=0, consume_searched=False))

SearchPatternSoftResult(True, 42, 0, 0.0)

SearchPatternSoftResult(True, 42, 0, 0.0)

SearchPatternSoftResult(True, 42, 0, 0.0)

search_pattern_soft() can also be used to search for a pattern in a variable.

>>> search_me = np.array([(1, 0), (1, np.pi), (1, 0), (1, 0), (1, np.pi), (1, np.

↪→pi/2), (1, np.pi), (1, np.pi)], dtype=np.float32)

>>> search_pattern_soft(search_me, pattern_list, method="euclid", bits_per_

↪→symbol=2, range=200, max_symbol_errors=0)

SearchPatternSoftResult(True, 2, 0, 0.0)

Notes

The result from apc.symbols.read cannot be directly used in search_pattern_soft(). It has to be
converted to a NumPy array first.

>>> search_me = np.array(apc.symbols.read(20), dtype=np.uint16)

>>> search_pattern_soft(search_me, pattern_list, method="euclid", bits_per_

↪→symbol=2, range=200, max_symbol_errors=0)

SearchPatternSoftResult(True, 8, 0, 0.0)

The hard decision search_pattern() command returns first match, the soft decision search_pattern_soft()

returns best match. Therefore the search results may be drastically different when replacing hard
decision processing with soft decision.

class procitec.decoding.SearchPatternSoftResult

Result returned by search_pattern_soft(); fields from SearchResult are available as well. Offset
and errors in symbols, not bits.

__bool__()

same value as found

__str__()

Return str(self).

© 2023 PROCITEC GmbH 93 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

property error_metric

Depends on search method. Undefined if found=False

• 'phase': averaged phase difference in range [0, 2*pi]

• 'euclid': averaged euclidian symbol distance

• 'fsk': averaged absolute symbol distance

Type

float

property errors

If found is True, number of bit errors in the found sequence, i.e. the Hamming distance between
the searched pattern and the found pattern in the given data; otherwise undefined.

Type

int

property found

True if the search has been successful, False otherwise.

Type

bool

property offset

If found is True, offset at which the pattern has been found, otherwise undefined.

Type

int

procitec.decoding.bit_correlation_and_maxima(data , pattern , * , normalize=False ,
count_maxima=0)

Computes binary correlation of two BitBuffers and searches for the requested number of maxima in
the correlation values

The correlation is computed according to

c[k] =
N∑
i=0

d[i + k]⊕ p[i],

where d and p are data and pattern respectively and N is the size of pattern.

New in version 21.1.0.

Parameters

• data (BitBuffer) –

• pattern (BitBuffer) – Size must not exceed the size of data.

• normalize (bool) – If False (default), the correlation values correspond to the
number of identical bits for the specific shift. Consequently, the values are in the
range [0,N], with N being the size of pattern.

If True, the returned correlation values are c′[k] = c[k]/(N/2) − 1, i.e. the returned
values are in the range [−1.0,+1.0].

• count_maxima (int) – If greater than 0, this defines the number of maxima to be
searched on the correlation result.

Returns

94 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

• correlation (numpy.ndarray) – Correlation values, where the index corresponds to
the shift between pattern and data.

• maxima (list(tuple(int, float))) – List of maxima, where each maxima is a tuple of
position and value of the maxima. The maxima are sorted according to the values
in descending order.

Example

>>> data = BitBuffer.from_int(0b0110001111000111, 16)

>>> pattern = BitBuffer.from_int(0b1111, 4)

>>> corr, maxima = bit_correlation_and_maxima(data, pattern, count_maxima=2)

>>> corr

array([3. , 2. , 1. , 1.0000001, 2. , 3. ,

4. , 3. , 2. , 1. , 1. , 1.9999999,

2.], dtype=float32)

>>> maxima

[(6, 4.0), (0, 3.0)]

2.3.2. Error Correction and Detection

The functionality in this section may be used to decode various forward error correction codes or verify
the correctness of a transmission.

class procitec.decoding.BlockDecoder(P , d)

Decoder for binary linear block codes described by a generator matrix.

The code must be systematic, i.e. its generator matrix G must have the form G = [I |P] where I is a
k × k identity matrix and P is a k × (n − k) matrix defining the equations for the parity bits. n is the
length of a codeword (a block) in bits and k is the number of information bits.

Parameters

• P (list(list(int))) – Matrix P as defined above. Each sub-list is a row of the
matrix and the elements must be either 0 or 1.

• d (int) – minimum distance of the block code

Example

Initialize a decoder for a C(7,4,3) Hamming code with

G =

1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

>>> import procitec.decoding as ddl

>>> P = [[1, 1, 0], [1, 0, 1], [0, 1, 1], [1, 1, 1]]

>>> dec = ddl.BlockDecoder(P, 3)

© 2023 PROCITEC GmbH 95 of 158

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

__call__(data)

see decode()

decode(data)

Perform error correction of a codeword

Parameters

data (BitBuffer) – The length of datamust be at least the size a codeword (i.e. ≥ n).
The order of bits must be [i0i1 . . . ik−1p0p1 . . .pn−k−1] (in order of ascending indices in
data). This is the ordering one gets when performing encoding as iG where i is a
row vector of information bits.

Returns

• data (BitBuffer) – Corrected codeword. The input codeword is returned unchanged
in case of a decoding failure.

• errors (int) – Number of corrected bits. -1 if decoding is not possible (too many
errors).

MAX_BLOCK_LEN = 32

MAX_MIN_DISTANCE = 9

MAX_PARITY_LEN = 20

MIN_BLOCK_LEN = 3

MIN_MIN_DISTANCE = 3

property d

minimum distance of the code as provided at initialization

property k

number of information bits in a codeword; determined from matrix P at initialization

property n

block length of the code in bits; determined from matrix P at initialization time

procitec.decoding.crc(poly , data , * , initial_state=0 , flush_zeros=True)

Universal cyclic redundancy check (CRC)

A cyclic redundancy check is defined by a generator polynomial of order n with binary coefficients ci :

g(x) = 1+
n∑
i=1

cix
i

The CRC (digest) of a data block viewed as a polynomial i(x) is usually determined by

i(x) mod g(x)

using GF(2) arithmetic. This operation may be implemented using the shift register circuit shown
below. Note that some references may reverse the order of the labels or the shift direction. The CRC
is the content of the shift register after shifting-in the last bit.

96 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

Some standards define the CRC as

xn · i(x) mod g(x)

which is equivalent to appending n zero bits to the data block; use the option flush_zeros in this
case.

Parameters

• poly (int) – Generator polynomial of the CRC as a bit mask where the least signif-
icant bit corresponds to the coefficient of exponent 0 (always 1). The next signifi-
cant bit is coefficient c1 and so on. The position of the highest bit set (zero based
counting) corresponds to n.

• data (BitBuffer) – Update the shift register (the CRC) using bits in data.

• initial_state (int) – Initial state of the shift register used for the CRC calcula-
tion.

• flush_zeros (bool) – If True, flush the shift register with zeros before returning
the result.

procitec.decoding.correct_majority(data , repeat_count)

Correct bits of a repeated frame using majority decision rule

If the number of repetitions (repeat_count) is even and the count of zeros and ones of a bit in the
frame is equal, bit 1 is used as the corrected value.

Parameters

• data (BitBuffer) – The repeated frame. Length must be a multiple of repeat_count.

• repeat_count (int) – count of frame repetitions (>=3)

Returns

• data (BitBuffer) – corrected frame of length len(data)/repeat_count

• bit_flipped (int) – overall number of bits flipped due to correction process, in all
repeated frames

Examples

• frames of length 8 and repeat_count = 3

00101011 first data frame
00011011 second data frame
01011001 third data frame

00011011 output, 4 bits flipped (in 2nd, 3rd, 4th and 7th column)

© 2023 PROCITEC GmbH 97 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

Each frame is placed into a single row for better explanation. The correction according to the
majority rule is applied across the columns, i.e. using corresponding bits of the frame.

• frames of length 3 and repeat_count = 5

001

001

011

101

110

001, 5 bits flipped (2 bits in 1st and 2nd column, 1 bit in 3rd)

• frames of length 4 and repeat_count = 4

0011

0101

1101

1101

1101, 4 flipped (2 bits in 1st columns, 1 bit in 2nd and 3rd)

If the number of zeros and ones is equal – as in the first column – bit 1 is returned.

class procitec.decoding.ViterbiDecoder(*args , **kwargs)

A Viterbi decoder for non-recursive convolutional codes with rate 1/n

1. ViterbiDecoder (mode, polys, *, puncture_pattern=[], use_soft_bits=False, initial_state=0, fi-
nal_state=0)

2. ViterbiDecoder (mode, trellis_table, rate, *, puncture_pattern=[], use_soft_bits=False, initial_state=0,
final_state=0)

As implied by the name, a convolutional code may be viewed as a filter with arithmetic in GF(2). Due
this correspondence a convolutional code with rate 1/n is usually described by n transfer functions
(generator polynomials), each in the form

gi(D) = 1+
K−1∑
k=1

ckD
k

where K is the constraint length of the code and ck ∈ {0,1}. An example for the implementation of a
convolutional encoder is given below.

Parameters

• mode ({"terminated", "truncated", "tailbiting", "streaming"}) – The mode
of operation of the decoder which is determined by the encoding process:

– "terminated": The encoder is flushed with a known sequence of K −1 bits (usu-
ally zeros). This way the final state of the encoder is known to the decoder. Also
known as flushed encoding.

98 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

– "truncated": The final state of the encoder is determined by the last bits of the
information block, i.e. the final state is not known to the decoder.

– "tailbiting": The encoder is preloaded with the last bits of the information
block, i.e. the initial and final state of the encoder are equal.

– "streaming": The encoder is never flushed; an infinite stream of information
bits is assumed. It is possible to use a defined or undefined initial_state for
the first decoding block. Manual flushing with termination to defined state is
possible.

Changed in version 23.1.0.

The default initial_state in mode "streaming" changed from undefined to 0.
For former behaviour initial_state has to be set to None.

The encoding modes "terminated", "truncated" and "tailbiting" can be re-
garded as block codes, i.e a fixed amount of data is encoded. Therefore all bits
from one encoded block are required for decoding and the decoder does not re-
tain an internal state. With "streaming" the decoder is fed with blocks of the in-
finite encoded bit stream and keeps an internal state for consecutive processing.
Flushing the decoder is possible either with a known terminating end state or an
unknown end state. See flush() for flushing in mode "streaming".

• polys (list(int)) – A list of polynomials defining the convolutional code. Each
element must be a bit mask where the least significant bit corresponds to the co-
efficient of exponent 0. The position of the highest bit set (zero based counting, in
any of the polynomials) determines the shift register length used in the encoding
process (K − 1).

Note: the required representation of the generator polynomials is reversed com-
pared to commonly used octal representation. The common representation as
found in most books and references puts the coefficient of the highest exponent
into the least significant bit; the coefficient for exponent zero is consequently at
the position of the highest bit set. See examples below.

Not allowed in combination with parameters trellis_table and rate.

• trellis_table (list(tuple(tuple(int, int), tuple(int, int), int))) – A list
which describes the trellis. See trellis_table for a more detailed parameter de-
scription. This allows to configure a trellis which cannot be abstracted from the
polynomials easily.

The length of the list has to be a power of 2. Not allowed in combination with
parameter polys.

New in version 21.1.0.

• rate (int) – Specifies the rate of the code (mother code if punctured). This setting
equals to the number of polynomials, so this setting is only allowed in combination
with parameter trellis_table, since the rate cannot be extracted directly from
the table.

New in version 21.1.0.

• puncture_pattern (list(int) or str, optional) – A list or string describing the
puncturing performed in the encoding process. A 1 indicates that the correspond-
ing is not punctured, i.e. transmitted; a 0 indicates that the corresponding bit is
punctured, i.e. not transmitted.

The puncture pattern is traversed periodically. This means:

– A puncture matrix can be passed by writing the elements of the matrix column-
wise into the list.

© 2023 PROCITEC GmbH 99 of 158

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str

Analysis Suite PYTHON DECODER DEVELOPMENT

– A list whose length is equal to the length of an information block is traversed
only once.

By default (empty list) no puncturing is assumed. In mode "streaming" it is possi-
ble to change the puncturing between blocks.

• use_soft_bits (bool, optional) – If True, make use of soft-bits when decoding.
By default (False) hard decision bits are used.

• initial_state (Optional[int], optional) – Initial state of the encoder. This is
the initial state of the shift register interpreted as a binary number (default 0). Only
used if mode is "terminated", "truncated" or "streaming"; ignored otherwise,
unless the mode is changed using switch_mode(). If None is passed, all states
are treated as equally probable. In mode "tailbiting" initial and final states are
calculated internally from the given coded data.

• final_state (int, optional) – Final state of the encoder. This is the content
of the shift register interpreted as a binary number, after flushing has been per-
formed. Only relevant and used if mode is "terminated" or the decoder is flushed in
mode "streaming" using flush(); ignored otherwise, unless the mode is changed
using switch_mode().

Examples

A popular convolutional code with rate 1/2 and constraint length K = 7 is

g1(D) = 1+D +D2 +D3 +D6

g2(D) = 1+D2 +D3 +D5 +D6.

The corresponding encoder implementation is depicted below. The state of the encoder is the content
of the shift register interpreted as a binary number.

The common octal representation of the polynomials is 171 respectively 133. The octal represen-
tation is retrieved by interpreting the coefficients of the polynomial with ascending exponents as a
binary number, here 1111001 respectively 1011011. Note this implies that the coefficient for exponent
0 is the most significant set bit and the coefficient for K − 1 is at the least significant bit (LSB)

The initialization of the Viterbi Decoder requires a reversed representation, i.e the coefficient for ex-
ponent 0 is at the LSB and the coefficient for K −1 is at bit K −1 (zero based counting). Consequently
the required representation for the polynomials given above is binary 1001111/octal 117/ hexadeci-
mal 4F respectively 1101101/155/6D.

For terminated encoding, also called flushed encoding, the decoder is initialized as shown below. By
default the initial and final state of the encoder as assumed to be 0.

>>> import procitec.decoding

>>> vit_dec = procitec.decoding.ViterbiDecoder("terminated", [0b1001111, 0x6D])

100 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

decode(data)

Decode one block of data

Unless mode is "streaming", all calls to decode() are independent and assume that the whole
coded block is passed. With "streaming" mode an infinite stream of coded blocks of different
sizes may be passed. However, no output will be made as long less than approximately decod-

ing_delay * approximate_rate bits have been provided.

For flushing the decoder in mode "streaming" see flush().

Parameters

data (BitBuffer or list(int)) – Encoded and punctured data to be decoded. In
case of a BitBuffer and soft-decision active, the soft decision values are expected
to be placed within shadow-buffer “soft”.

In case of an integer list each list entry represents one bit. For soft-decision the
integer values have to be within range [-127, 127] and for hard decision only the
values [0, 1] are allowed. All other values lead to undefined behavior.

For a soft bit the most confident 1 is soft value -127, the most confident 0 is soft
value 127.

Note: With a soft value of 0 it is possible to puncture the code

manually.

Returns

• data (BitBuffer) – decoded bits; empty if mode is "streaming" and not enough
data has been provided

• metric (int) – Metric of the final state in the decoding process. This is the approx-
imate number of corrected errors.

flush(terminate)

Only useful in mode "streaming". For the other modes the flush is always included in the call
of decode().

Due to the decoding delay some bits remain in the decoders trellis even after the last call of
decode(). This method flushes these remaining bits either with a known final state (most times
0) or in a "truncated" fashion.

The decoder is also reset (see reset()).

New in version 23.1.0.

Parameters

terminate (bool) – If False, the remaining bits in the trellis are flushed up to the
trellis state with best metric (as in mode "truncated"). Otherwise the set final state
(see set_final_state()) is used for flushing (as in mode "terminated").

The default is False.

Returns

• data (BitBuffer) – decoded bits; empty if mode is not "streaming" or not enough
data has been provided.

• metric (int) – Metric of the final state in the decoding process. This is the approx-
imate number of corrected errors.

reset()

Reset internal state of the decoder

Has only an effect if mode is "streaming" (all other modes are stateless).

© 2023 PROCITEC GmbH 101 of 158

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

set_final_state(final_state)

Set final state of the encoder

Parameters

final_state (int) – see ViterbiDecoder for details

set_initial_state(initial_state)

Set initial state of the encoder

Parameters

initial_state (Optional[int]) – see ViterbiDecoder for details

set_puncture_pattern(puncture_pattern)

Change the puncture pattern

The internal puncturing position is reset to 0. In mode "streaming" it is possible to change the
puncturing between blocks.

Parameters

puncture_pattern (list(int) or str) – see ViterbiDecoder for details

switch_mode(mode)

Switch the decoding mode

The decoder is also reset (see reset()).

Parameters

mode (str) – The new mode to use in the following calls to decode(); see Viter-

biDecoder.

property approximate_rate

Approximate rate of the configured code including puncturing. For non-punctured codes the
rate is 1/n.

Type

float

property decoding_delay

Minimal internal decoding delay. Of importance for “streaming” mode only.

Type

int

property last_final_state

Last final state of the decoder

Final state of the decoder (of the trellis) reached in the last call to decode(). Only valid if de-
code() has been called at least once. The value depends on mode:

• "terminated": The end state either defined at initialization time of the decoder or set by
set_final_state().

• otherwise: The state with the best metric.

Type

int

property memory_usage

Approximate memory usage for internal buffers in bytes

Type

int

102 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

property mother_rate

The value of n. This is the inverse rate of the configured mother code (i.e. puncturing is ignored).

Type

int

property puncture_pattern

Current puncture pattern

Type

list(int)

property trellis_table

Trellis table of the configured code

Each element of the returned list of length 2**reg_len is a tuple describing a state in the trellis
of the code. The members of the tuple are:

• (s0, s1): previous states. The transition to state s0 was caused by information bit 0, tran-
sition to state s1 by information bit 1.

• (c0, c1): coded bits output by the encoder by a transition to the current state, packed in
an integer. c0 is the output if the transition to the current state was caused by information
bit 0; c1 is the output if the transition was caused by information bit 1.

• info: information bit corresponding to the current state, i.e. information bit which caused
a transition to the current state.

Type

list(tuple(tuple(int, int), tuple(int, int), int))

class procitec.decoding.ReedSolomonDecoder(n , k , prim_poly , * , first_root=1 , shorten=0 ,
puncturing_pos=[])

Decoder for Reed-Solomon (RS) codes defined over GF(2m).

Decoder for Reed-Solomon codes defined over an extension Galois field of order 2m (GF(2m)). Short-
ened and punctured codes are supported. Erasure positions, i.e. positions of symbol which are known
to be erroneous, may be provided to aid the decoder. Systematic encoding is assumed.

The order m of the primitive polynomial prim_poly for the construction of GF(2m) defines

• the length n of the un-shortened and un-punctured “mother” code (in symbols)

• and the length of a symbol in bits.

The generator polynomial for a RS code is usually defined by

g(x) =
n−k+b−1∏
i=b

(x −αi)

where b is the position of the first root (usually 1), k is the number of information symbols and α
is a primitive element of the field. The number of redundancy symbols n − k defines the correction
capability of the code: The number of correctable errors is limited by 2t + e ≤ n − k where t is the
number of errors and e is the number of punctures and erasures.

Parameters

• n (int) – Length of the un-shortened and un-punctured mother code. Must be 2m−1
where m is the order of the primitive polynomial prim_poly.

• k (int) – Number of information symbols of the un-shortened mother code

© 2023 PROCITEC GmbH 103 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

• prim_poly (int) – Primitive polynomial for the construction of the Galois field. This
must be a bit mask where the least significant bit corresponds to the to coefficient
of exponent 0. The position of the highest bit set (zero based counting) determines
m.

• first_root (int, optional) – Position of the first root in the generator polyno-
mial of the code g(x) (b in the equation above). Must be greater than 0 (default
1).

• shorten (int, optional) – Number of symbols by which the mother code is short-
ened (default 0)

• puncturing_pos (list(int), optional) – Position of punctured symbols. By de-
fault (empty list) a code without puncturing is assumed.

Only redundancy symbols may be punctured, i.e. the positions must be in the range
[0;n− k[. Number of punctured symbols must be smaller than n− k.

Examples

A decoder for a RS code with 9 information symbols in GF(24) using the primitive polynomial x4+x+1.
The code is not shortened or punctured:

>>> from procitec.decoding import ReedSolomonDecoder as RS

>>> rs_dec = RS(15, 9, 0x13)

A decoder for a code with the following specification:

• mother code with n = 63 and k = 45

• shortened by 10 symbols

• first 4 symbols of the redundancy are punctured

• x6 + x+1 as primitive polynomial

The resulting codewords have a length of n′ = n − shorten − 4 = 59 symbols and contain k′ = k −
shorten = 35 information symbols.

>>> from procitec.decoding import ReedSolomonDecoder as RS

>>> rs_dec = RS(63, 45, 0x43, shorten = 10, puncturing_pos = [0, 1, 2, 3])

__call__(data , * , shorten=None , puncturing_pos=None , erasure_pos=[])

see decode()

decode(data , * , shorten=None , puncturing_pos=None , erasure_pos=[])

Perform error correction

Parameters

• data (BitBuffer) – The codeword to be corrected. The length of data must be at
least the size of a codeword in bits, i.e. ≥m · (n− shorten−number of punctures).
The codeword polynomial must be given in order of descending exponents, i.e.
the lower k′ = k−shorten symbols are information symbols (systematic encoding).
The bits of symbols must be given in order of descending exponents as well.

• shorten (int, optional) – If None (default), the shortening amount provided at
initialization time is used. Otherwise, the provided value is used.

104 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

• puncturing_pos (list(int), optional) – If None (default), the puncturing po-
sitions provided at initialization time are used. Otherwise, the provided list of
puncturing positions is used.

• erasure_pos (list(int), optional) – If the list is empty (default) no erasures
are considered when decoding. Otherwise the list defines the positions of era-
sures (symbols which are known to be erroneous).

The following rules apply:

– Erasure positions must be provided in terms of the un-shortened and un-punctured
codeword.

– Duplicate erasure and/or puncturing positions must not be provided.

– Erasure positions must be in range [0;n− shorten).

Returns

• data (BitBuffer) – Corrected codeword. The input codeword is returned unchanged
in case of a decoding failure.

• errors (int) – Number of corrected symbols. -1 if decoding is not possible (too
many errors).

class procitec.decoding.BCHDecoder(n , t , prim_poly , * , shorten=0)

Decoder for binary and primitive Bose-Chaudhuri-Hocquenghem (BCH) codes defined over GF(2m).

Decoder for binary and primitive Bose-Chaudhuri-Hocquenghem codes defined over an extension
Galois field of order 2m (GF(2m)). Shortened codes are supported. Erasure positions, i.e. positions of
bits which are likely erroneous, may be provided to aid the decoder. Systematic encoding is assumed.

The order m of the primitive polynomial for the construction of GF(2m) defines the length n of the
un-shortened “mother” code: 2m−1‘(inbits).(Note : non−primitiveBCHcodeshavealength :math : ‘ <
2m − 1).

The generator polynomial g(x) for a binary, primitive and t-error correcting BCH code is defined as
the lowest-degree polynomial with coefficients in GF(2) which has

α,α2, . . .α2t

as its roots, i.e. g(αi) = 0 for 1 ≤ i ≤ 2t. t is the error correction capability of the code and α is a
primitive element of the field. The number of correctable errors is limited by 2t′ + e ≤ t where t′ is the
number of errors and e is the number of erasures. There is no closed-form formula to determine the
number of information bits k in an BCH-Code. However, for many BCH-Codes k = n−mt applies.

Parameters

• n (int) – Length of the un-shortened mother code. Must be 2m − 1 where m is the
order of the primitive polynomial prim_poly

• t (int) – Error correction capability of the code

• prim_poly (int) – Primitive polynomial for the construction of the Galois field. This
must be a bit mask where the least significant bit corresponds to the to coefficient
of exponent 0. The position of the highest bit set (zero based counting) determines
m.

• shorten (int, optional) – Number of bits by which the mother code is shortened
(default 0).

© 2023 PROCITEC GmbH 105 of 158

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

Examples

__call__(data , * , shorten=None , erasure_pos=[])

see decode()

decode(data , * , shorten=None , erasure_pos=[])

Perform error correction

Parameters

• data (BitBuffer) – The codeword to be corrected. The length of data must be
at least the size a codeword in bits, i.e. ≥ n − shorten. The codeword polynomial
must be given in order of descending exponents, i.e. the lower k′ = k−shorten bits
are information bits (systematic encoding).

• shorten (int, optional) – If None (default), the shortening amount provided at
initialization time is used. Otherwise, the provided value is used.

• erasure_pos (list(list(int)), optional) – If the list is empty (default) no era-
sures are considered when decoding. Otherwise the list defines the positions of
erasures (symbols which are known to be erroneous).

The following rules apply:

– Erasure positions must be provided in terms of the un-shortened codeword.

– Duplicate erasure positions must not be provided.

– Erasure positions must be in range [0;n− shorten).

Returns

• data (BitBuffer) – Corrected codeword (payload+redundancy). The input code-
word is returned unchanged in case of a decoding failure.

• errors (int) – Number of corrected bits. -1 if decoding is not possible (too many
errors).

2.3.3. Burst Operations

procitec.decoding.burstoperations.search_burst(data , * , max_offset=None , max_length=None ,
start_offset=0 , consume_searched=True)

Search for the next full burst and return its position and length

Parameters

• data (BitBuffer or BitStream) – Input where the search is performed

• max_offset (int, optional) – If None (default), the search range is not limited.
However, the search will eventually stop depending on the type of the input data:

– BitBuffer: The search range is limited by the buffer’s size.

– BitStream: The search is not aborted until a burst is found or until the stream
ends (see EndOfDataError).

A value other than None defines the maximum allowed offset for a burst start in the
input (the returned offset for a found burst will not be greater than this value). This
means that no more than max_offset + 1 bits are searched; this amount of bits is
consumed if no burst start is found.

106 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

• max_length (int, optional) – Limit the length of the burst to find to max_length,
i.e. bursts longer than max_length are skipped. If None (default) a burst of any
length is searched.

• start_offset (int, optional) – May only be used if data is a BitBuffer: Start
search at given offset (default 0).

• consume_searched (bool, optional) – May only be used if data is a BitStream: If
True (default), bits up to the found start of the burst are consumed. In case of an
aborted search, all searched bits are consumed.

Returns

If no burst is found None is returned. Otherwise a tuple containing the offset (relative
to start_offset) and the length of the found burst is returned.

Note: The offset points to the first bit of a burst. If consume_searched is False, con-
suming or reading offset bits from data (if it is a BitStream) will position the stream
at that bit: a subsequent consume (read) will consume (return) the first bit of a burst.
If consume_searched is True, the stream will be positioned at the first bit of a burst by
search_burst().

If data is a BitBuffer, data[start_offset+offset] is the first bit of a burst.

Return type

tuple(int, int) or None

procitec.decoding.burstoperations.search_burst_end(data , * , max_offset=None , start_offset=0 ,
consume_searched=True)

Search for the next end of a burst and return its offset

See search_burst() for a description of the parameters.

Returns

Offset (relative to start_offset) of the found end of a burst or None if no end of a
burst is found.

Note: The offset points to the last bit of a burst. If consume_searched is False, con-
suming or reading offset bits from data (if it is a BitStream) will not consume (return)
that bit. Consume (read) offset+1 bits in order to include the last bit of a burst. The
same logic also applies if consume_searched is set to True: Consume (read) an addi-
tional bit in order to skip (get) the last bit of a burst.

If data is a BitBuffer, data[start_offset+offset] is the last bit of a burst.

Return type

int or None

procitec.decoding.burstoperations.search_burst_start(data , * , max_offset=None ,
start_offset=0 ,
consume_searched=True)

Search for the next start of a burst and return its offset

See search_burst() for a description of the parameters.

© 2023 PROCITEC GmbH 107 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

Returns

Offset (relative to start_offset) of the found start of a burst or None if no start of a
burst is found.

Note: The offset points to the first bit of a burst. If consume_searched is False, con-
suming or reading offset bits from data (if it is a BitStream) will position the stream
at that bit: a subsequent consume (read) will consume (return) the first bit of a burst.
If consume_searched is True, the stream will be positioned at the first bit of a burst by
search_burst_start().

If data is a BitBuffer, data[start_offset+offset] is the first bit of a burst.

Return type

int or None

procitec.decoding.burstoperations.stream_until_burst_end(data: BitStream, * ,
max_offset=None ,
max_length=None)→ BitStream |
None

Search for the next burst start and return a stream which ends at a following burst end or after
max_length bits

First, all bits until a burst start are consumed. If the stream does not contain a burst start, the
behavior depends on the value of max_offset:

• max_offset is None: The search for a burst start is not aborted until a burst start is found or
until the stream ends (see EndOfDataError).

• max_offset is not None: If no burst start is found, max_offset + 1 bits are consumed and None

is returned.

As soon as a burst start is found, a stream is returned, otherwise None. The stream ends if one of the
following occurs, regardless of the value of max_length:

• The underlying BitStream (argument data) ends.

• A burst end is found.

If max_length is not None, the stream additionally ends if max_length bits have been read. Note: This
may occur before a burst end is found. This in turn means that an incomplete burst might be read.

Read operations from the returned stream will ignore any burst starts.

Parameters

• data (BitStream) – Input where the search is performed

• max_offset (int, optional) – Maximum offset at which a burst must start in the
input. See description above for details.

• max_length (int, optional) – If not None, the value defines the maximum length
of the returned stream. See description above for details.

Returns

See description above

Return type

BitStream or None

108 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

2.3.4. Pre-Processing

Pre-processing modifies incoming symbols before they are placed in the input buffer (apc.data).

This package contains a number of functions to create pre-processing steps to be passed as arguments to
apc.preprocessing().

Example

from procitec.decoding import preprocessing as pre

apc.preprocessing(

pre.reverse_symbol_bits(),

pre.nrz_decode(),

)

The order and number of steps is arbitrary. Each call to apc.preprocessing() overwrites the current set
of pre-processing steps.

2.3.4.1. Bit-Level Pre-Processing

procitec.decoding.preprocessing.nrz_decode(change_bit=1)

Perform a None-Return-To-Zero (NRZ-I) decoding. By default (change_bit=1) changes between suc-
cessive input bits result in a One-Bit.

Parameters

change_bit (int, optional) – Bit value to represent a change input bits.

• Non-return-to-zero Mark (NRZ-M): One-Bit on toggle

• Non-return-to-zero Space (NRZ-S): Zero-Bit on toggle

Returns

a preprocessing step

Return type

PreProcessor

procitec.decoding.preprocessing.nrz_encode(change_bit=1)

Perform a None-Return-To-Zero inverted (NRZ-I) encoding. By default (change_bit=1) incoming One-
Bits cause an output value toggle and Zero-bits repeat the previous value.

Parameters

change_bit (int, optional) – Bit value that causes a level shift in the output.

• Non-return-to-zero Mark (NRZ-M): One-Bit will toggle output

• Non-return-to-zero Space (NRZ-S): Zero-Bit will toggle output

Returns

a preprocessing step

Return type

PreProcessor

© 2023 PROCITEC GmbH 109 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

procitec.decoding.preprocessing.descramble(polynomial)

Directs the entire input bit-stream through a descrambler by means of the shift-register equation:

OUT = IN(p0 + p1z
−1 + p2z

−2 + · · ·+ pnz−n)

where n < 255.

In case the bit stream consists of multiple channels, then the descrambling is performed as if it were
a single bit stream processing all channels from a single time slot before continuing with the next
time slot.

Parameters

polynomial (int) – Describes to polynomial to be used. The LSB p0 (int value 1) repre-
sents to current input bit. p1 the previous one

Returns

a preprocessing step

Return type

PreProcessor

Example

The polynomial 1+z−6+z−7 means each bit is XOR combined with the values of those 6 and 7 before.
The integer representation here is 0b11000001 or 0xC1.

procitec.decoding.preprocessing.invert()

Invert all incoming bits

Returns

a preprocessing step

Return type

PreProcessor

2.3.4.2. Symbol-Level Pre-Processing

procitec.decoding.preprocessing.reverse_symbol_bits()

Reverse bit order with in each symbol

procitec.decoding.preprocessing.convert_symbols(table)

Converts the input symbols with the provided table. Symbols are mapped using the table index as
input.The bit rate remains unchanged.

Parameters

table (list(int)) – The table must have one entry for each incoming symbol (2**bits_per_symbol)

Returns

a preprocessing step

Return type

PreProcessor

Example

If used as shown below:

110 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

from procitec.decoding import preprocessing as pre

apc.preprocessing(

pre.convert_symbols([1,0,2,3])

)

will convert the following sequence of symbols

3, 2, 1, 0, 0, 1, 2, 3

to

3, 2, 0, 1, 1, 0, 2, 3

procitec.decoding.preprocessing.differential_encode()

Converts the input symbol stream to a differentially-coded symbol stream. The main purpose of
this command is to transform absolute-PSK- demodulated data streams to differentially-coded data
streams. The bit rate remains unchanged.

Returns

a preprocessing step

Return type

PreProcessor

2.3.4.3. Utilities

class procitec.decoding.preprocessing.PreProcessor

Base class for pre-processing steps to be used in apc.preprocessing().

This type can not be instantiated directly. It serves as a base class for all pre-processing steps (see
above).

reset()

Set enabled to True and reset any internal state

New in version 21.2.0.

property enabled

If False, skip this pre-processing step, i.e. go to the next one (if there is one)

New in version 21.2.0.

Type

bool

2.3.5. Alphabets

Alphabets represents a mapping of bits (codewords) to characters and strings. The main benefit over raw
dict objects is the ability to do fuzzy look-ups, allowing best-effort decoding of erroneous codewords. In
addition, alphabets with multiple symbol layers and the state handling thereof is build-in.

© 2023 PROCITEC GmbH 111 of 158

https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

class procitec.decoding.Alphabet(table , * , codeword_length=None , replacement_character='
uFFFD' , msb_first=False)

Create an Alphabet which represents a mapping of bits (codewords) to characters and strings

Both fixed- and variable-length codes are supported. A replacement character can be defined which
is returned whenever a codeword is not defined by the alphabet. Support for codes which switch
between different tables (level shifts) is available as well.

Parameters

• table (dict((int or tuple(int, int)), list(str))) – The key in the dictio-
nary is a codeword (a sequence of bits). For a fixed-length code the key must be an
integer representing the codeword. For a variable-length code the key must be a
tuple where the first value is the codeword and the second value its length in bits.

The value corresponding to a key in the dictionary must be a list containing strings
(characters) which are output depending on the current level shift. The first value
in the list belongs to the first level of the alphabet, the second value to the second
level and so on. Switching between levels is performed by using the special value
procitec.decoding.LEVEL[i] where i is the number of the level to switch to. Up
to ten levels are possible, with LEVEL[0] being the first one.

• codeword_length (int, optional) – Defines the length of a codeword in bits. This
parameter must be present and greater than zero for fixed-length codes. The value
is ignored for variable-length codes.

• replacement_character (str, optional) – This string (character, by default “
uFFFD” [Unicode U+FFFD]) is returned by search functions whenever a codeword
can not be found in the alphabet (see decode(), decode_alphabet()).

• msb_first (bool, optional) – By default (False) the keys of the dictionary table,
i.e. the codewords, are used as is. If True, the codewords are reversed.

See also:

decode_alphabet(), search_alphabet()

Examples

Assume the following fixed-length mapping of bits to characters, with two different levels:

codeword character

bits first level second level

0b00000 a 1

0b01011 b 2

0b10101 c 3

0b11110 level switch level switch

The corresponding Alphabet is initialized the following way:

112 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool

PYTHON DECODER DEVELOPMENT Analysis Suite

>>> from procitec.decoding import Alphabet

>>> from procitec.decoding import LEVEL as L

>>> a = Alphabet(

... {

... 0b00000: ["a", "1"],

... 0b01011: ["b", "2"],

... 0b10101: ["c", "3"],

... 0b11110: [L[1], L[0]]

... },

... codeword_length=5)

...

>>>

Note that the second argument (codeword_length) must be present for fixed-length codes. decode()
can now be used the retrieve the character corresponding to a codeword:

>>> a.decode(0)

('a', 0)

By default the first level is used and only an exactly matching codeword (a Hamming distance of
zero) is returned as a result. The second returned value is the Hamming distance between the
passed codeword and the codeword found in the alphabet. If a codeword is not found, replace-
ment_character is returned and the second value of the tuple is None:

>>> a.decode(0b0001)

('

uFFFD', None)

You may decode using another level and permit bit errors:

>>> a.decode(0b11111, level=1, max_errors=1)

(0, 1)

An integer as the returned value indicates a level shift to that level.

Assume the following variable-length mapping of bits to characters, with one level of characters:

codeword character

bits code length characters

0b11 2 1

0b1100 4 E

0b11011 5 T

0b11010 5 A

Variable-length codes are defined and used in a similar way as fixed-length codes, but tuple instead
of int is used:

© 2023 PROCITEC GmbH 113 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

>>> from procitec.decoding import Alphabet

>>> a = Alphabet(

... {

... (0b11, 2): ["1"],

... (0b1100, 4): ["E"],

... (0b11011, 5): ["T"],

... (0b11010, 5): ["A"],

... }, msb_first=False)

...

>>>

decode() can now be used to retrieve the character corresponding to a codeword. Please note that
you musst pass a tuple containing the codeword and its length.

>>> a.decode((0b11010, 5))

('A', 0)

decode(codeword , * , level=0 , max_errors=0)

Decode a codeword, i.e. retrieve the corresponding string

Parameters

• codeword (int or tuple(int, int)) – For fixed-length codes provide the code-
word to be decoded. For variable-length codes provide a tuple containing the
codeword to be decoded and its length in bits.

• level (int, optional) – Use the level level for decoding. By default the first
level is used.

• max_errors (int, optional) – Allow up to max_errors bit errors (default 0) when
decoding the codeword. This means that the Hamming distance between code-

word and the codeword actually used for decoding will be not greater than max_errors.
This option may only be used with fixed-length codes.

Returns

• string (str or int) – Either a str corresponding to codeword at level level or an int
denoting the level to switch to, if codeword represents a level shift at level level.
If codeword is not found in the alphabet with given maximum number of errors,
replacement_character is returned.

• bit_errors (int or None) – The number of bit errors, i.e. the Hamming distance
between codeword and the codeword actually used for decoding. If codeword is
not found in the alphabet the value is None. Note, that in case of a variable-
length code, this value is either 0 if codeword is found in the alphabet and None

otherwise, since in maximum number of errors is always 0 for variable-length
codes

property codeword_length

codeword length for fixed-length codes; maximum codeword length for variable-length codes

property levels

number of levels in the alphabet

property replacement_character

The returned string if a codeword can not be found the alphabet.

114 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

property variable_length_code

True if the code is a variable-length code, False for fixed-length codes

class procitec.decoding.AlphabetDecoder(alphabet , * , initial_level=0 , force_level=False)

A decoder to map a stream of bits to characters as defined by an Alphabet

Unlike decode_alphabet() an AlphabetDecoder retains a state between calls to decode(). This
allows to pass partial data; decoded codewords will be returned as soon as possible when new data
is provided using decode().

Parameters

• alphabet (Alphabet) – Alphabet to be used for decoding

• initial_level (int, optional) – The initial level to assume at the start of decod-
ing. The level to be used for the next decode() can be set by modifying the level

property.

• force_level (bool, optional) – Level shifting codewords encountered during the
decoding process are respected by default. With force_level = True any level
shifting codewords are ignored and an empty string is returned instead. All other
codewords are decoded using the level level.

This settings can by modified changing the force_level property.

See also:

decode_alphabet()

Stateless decoding of an Alphabet

decode(data , max_errors=0)

Decode a stream of bits by using the underlying Alphabet to translate bit sequences to charac-
ters

The data does not need to be complete, i.e the last codeword in data may have missing bits.
As soon as new data is provided the partial codeword of the previous call to decode() will be
returned as well.

Parameters

• data (BitBuffer) – The data to decode. The last codeword does not need to be
complete, i.e. the length of data does not need to be a multiple of the codeword
length (in case of a fixed-length code).

• max_errors (int, optional) – Allow up to max_errors bit errors (default 0) in
each codeword: If a bit sequence from the input can not be found in alphabet a
codeword with a Hamming distance of up to max_errors is searched. The code-
word with the smallest Hamming is taken. If there are several candidates the first
match is returned, i.e. the output depends on the order of definition of codewords
in alphabet.

Alphabet.replacement_character is used as output if the codeword cannot be
found even after considering max_errors.

Only applicable for an alphabet with a fixed-length code.

Returns

The decoding result

Return type

DecodeAlphabetResult

© 2023 PROCITEC GmbH 115 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

reset()

Resets level to the initial value and clears the internal buffer of possible remaining bits

property force_level

Current value of the setting. A change takes effect at the next decode(). When False, level
shifting codewords are respected. Otherwise any level shifting codewords are ignored and an
empty string is returned instead. All other codewords are decoded using the level level.

Type

bool

property level

Current level of decoder. May be set to define which level to use at next decode()

Type

int

class procitec.decoding.DecodeAlphabetResult

Result returned by decode_alphabet() and AlphabetDecoder.decode()

Example

>>> from procitec.decoding import Alphabet, decode_alphabet

>>> from procitec.common.bitbuffer import BitBuffer

>>> alphabet = Alphabet({ 0x00:["A"] }, codeword_length = 4)

>>> data = BitBuffer.from_int(0b1111_0111_0011_0001_0000, 5*4)

>>> result = decode_alphabet(data, alphabet, max_errors = 2)

'AAA

uFFFD
>>> result.message # Only the first three codewords where accepted.

uFFFD'

>>> result.bit_errors # This first three codewords contain 0, 1

>>> # and 2 bit errors respectively.

>>> # Note, that no bit errors of not accepted

>>> # codewords contribute to this value.

3

>>> result.codeword_errors # Two codewords aren't accepted.

2

__bool__()

True if codeword_errors is zero, False otherwise

__str__()

Returns message

property bit_errors

Total number of bit errors accepted in the decoding process due to the given max_errors. If any
codeword error occurred then codeword_length is returned. Always 0 in case of an Alphabet

with a variable-length code.

Changed in version 23.1.0: In older releases bit_errors had the value 0 if a codeword error did
occurr.

Type

int

116 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

property codeword_errors

Number of codeword errors, i.e. how many times a bit sequence from the input is not found in
the used Alphabet. This is the number of replacement characters of the used Alphabet in the
output message. Note that in the case of several possible codewords (due to allowed max_errors

> 0) a value of 0 is returned, too.

Type

int

property message

Decoded output message

Type

str

procitec.decoding.decode_alphabet(data , * , alphabet , initial_level=0 , force_level=False ,
max_errors=0)

Decode a sequence of bits by using an Alphabet to translate bit sequences to characters

Parameters

• data (BitBuffer) – Sequence of bits to be decoded. With a fixed-length code in
alphabet the length of data must be a multiple of the codeword length.

• alphabet (Alphabet) – Mapping which defines how specific bit sequences are trans-
lated to characters

• initial_level (int, optional) – Initial level inside alphabet which is used for
decoding. Only applicable for an alphabet with more than one level. By default
the first level is used.

• force_level (bool, optional) – Level shifting codewords encountered during the
decoding process are respected by default. With force_level = True any level
shifting codewords are ignored and an empty string is returned instead. All other
codewords are decoded using the level initial_level.

• max_errors (int, optional) – Allow up to max_errors bit errors (default 0) in
each codeword: If a bit sequence from the input can not be found in alphabet a
codeword with a Hamming distance of up to max_errors is searched. The first
match is returned, i.e. the output depends on the order of definition of codewords
in alphabet.

Alphabet.replacement_character is used as output if the codeword cannot be
found even after considering max_errors.

Only applicable for an alphabet with a fixed-length code.

Returns

The decoding result

Return type

DecodeAlphabetResult

See also:

AlphabetDecoder

Supports passing of partial data by retaining an internal state

procitec.decoding.LEVEL: list

This is a list of predefined marker objects used in class Alphabet to denote level changes. For usage
details and examples see Alphabet.

© 2023 PROCITEC GmbH 117 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list

Analysis Suite PYTHON DECODER DEVELOPMENT

procitec.decoding.alphabets.get_ita2_alphabet(alphabet_name: str)→ Alphabet

Returns an ITA2 alphabet. 32 codewords: 0. . . 31 (codeword_length=5)

New in version 21.2.0.

Parameters

alphabet_name (str) – Specify the alphabet. Supported are the following:

•”ITA2”

– (Baudot-Murray code

– 2 levels: letter shift, figure shift

•”ITA2_ARABIC”

– Arabic characters (Baghdad 80, ATU-80)

– 2 levels: letter shift, figure shift

•”ITA2_CYRILLIC”

– Third Shift Cyrillic (MTK-2)

– 3 levels: letter shift, figure shift

•”ITA2_HEBREW”

– Hebrew characters

– 2 levels: letter shift, figure shift

•”custom” alphabet

– searches for file “custom.yaml” in user and install folder

– YAML file with dict (codeword length must fit)

– filename is arbitrary but must match name of alphabet

Returns

result

Return type

Alphabet

procitec.decoding.alphabets.get_ita5_alphabet(alphabet_name: str)→ Alphabet

Returns an ITA5 alphabet. 128 codewords: 0x00. . . 0x7f (codeword_length=7)

New in version 21.2.0.

Parameters

alphabet_name (str) – Specify the alphabet. Supported are the following:

•”ITA5”

– ITA-5 (ASCII, ISO-646-US)

•”ITA5_GRAPH”

– graphical representation of control characters using unicode https://en.

wikipedia.org/wiki/ISO_2047

•”custom” alphabet

– searches for file “custom.dict” in user and install folder

– text file with Python dictionary (see ita2lower.dict as example)

118 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://en.wikipedia.org/wiki/ISO_2047
https://en.wikipedia.org/wiki/ISO_2047

PYTHON DECODER DEVELOPMENT Analysis Suite

– filename is arbitrary but must match name of alphabet

Returns

result

Return type

Alphabet

procitec.decoding.alphabets.ASCII_8_BIT = Alphabet(...)

8 bit ASCII

• 256 codewords: 0x00. . . 0xff (codeword_length=8)

It is recommended to use instead to_bytes(..).decode(..)

see https://docs.python.org/3/library/codecs.html#standard-encodings

procitec.decoding.alphabets.ASCII_8_reduced = Alphabet(...)

8 bit ASCII reduced

• 95 codewords: 0x20. . . 0x7e (codeword_length=8)

• no control characters and characters above 0x7e are omitted

procitec.decoding.alphabets.CCIR476 = Alphabet(...)

CCIR 476

CCIR 476 is a character encoding used in radio data protocols such as SITOR, AMTOR and
Navtex. It is a recasting of the ITA2 character encoding, known as Baudot code, from a
five-bit code to a seven-bit code. In each character, exactly four of the seven bits are mark
bits, and the other three are space bits. This allows for the detection of single-bit errors.

New in version 22.1.0.

procitec.decoding.alphabets.ITA2 = Alphabet(...)

ITA-2 (Baudot-Murray code)

• 32 codewords: 0. . . 31 (codeword_length=5)

• 2 levels: letter shift, figure shift

If a different replacement character or bit ordering is desired then create an alphabet di-
rectly from the _ITA2_TAB dictionary

>>> from procitec.decoding import Alphabet

>>> from procitec.decoding.alphabets import _ITA2_TAB

>>> alphabet=Alphabet(_ITA2_TAB, codeword_length=5, msb_first=True,�
↪→replacement_character = '')

New in version 21.2.0.

procitec.decoding.alphabets.ITA2P_EVEN = Alphabet(...)

ITA2P with even parity (ARQ-1A)

• 5 bit ITA2 alphabet extended to 7 bits with 3 additional characters

• leading ‘0’ for all original ITA-2 characters and ‘1’ for additional characters

• trailing parity bit to have overall even parity

New in version 22.2.0.

© 2023 PROCITEC GmbH 119 of 158

https://docs.python.org/3/library/codecs.html#standard-encodings

Analysis Suite PYTHON DECODER DEVELOPMENT

procitec.decoding.alphabets.ITA2P_ODD = Alphabet(...)

ITA2P with odd parity (ARQ-1A)

• 5 bit ITA2 alphabet extended to 7 bits with 3 additional characters

• leading ‘0’ for all original ITA-2 characters and ‘1’ for additional characters

• trailing parity bit to have overall odd parity

New in version 22.2.0.

procitec.decoding.alphabets.ITA3 = Alphabet(...)

ITA-3 (CCIR342-2)

• 32 codewords plus 3 codes for IDLE and RQ (codeword_length=7)

• 2 levels: letter shift, figure shift

New in version 22.1.0.

procitec.decoding.alphabets.ITA5 = Alphabet(...)

ITA-5 (ASCII, ISO-646-US)

• 128 codewords: 0x00. . . 0x7f (codeword_length=7)

New in version 21.2.0.

2.3.6. Utilities

procitec.decoding.extract_pattern(data , pattern)

Extracts a set of single bit positions defined by a bit pattern and returns a new BitBuffer containing
only the extracted bits

For each bit in pattern, if it is 1, the bit at the same position in data is copied into the returned
BitBuffer. Thereby, the size of the returned BitBuffer will match the hamming weigth of pattern.
The size of pattern has to be equal or less than the size of data.

Example

data: [b0, b1, b2, b3, b4, b5, b6, b7]

pattern: [0, 0, 1, 0, 1, 1]

returns: [b2, b4, b5]

Parameters

• data (BitBuffer) – BitBuffer from which bits are extracted

• pattern (BitBuffer) – length of a symbol in bits

Returns

BitBuffer containing only the extracted bits

Return type

BitBuffer

120 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

procitec.decoding.extract_interleaved(data , * , bit_dist , char_dist , char_size , char_ix , block_len)

Extract and deinterleave bits of one symbol from interleaved bits.

Parameters

• data (BitBuffer) – interleaved bits

• bit_dist (int) – distance between two successive bits of the same symbol (mea-
sured in bits)

• char_dist (int) – distance between the first bit of two successive symbols (mea-
sured in bits)

• char_size (int) – length of a symbol in bits

• char_ix (int) – index of the symbol to be extracted (zero based counting)

• block_len (int) – Length of interleaving block. All indices used to access bits in
data are taken modulo this value.

Returns

deinterleaved symbol of size char_size

Return type

BitBuffer

Example

Assume the following 16 bits contain 4 interleaved symbols of size 4. The first symbol starts at
bit_position = 0, the second at bit_position = 3, then 6 and 9.

>>> interleaved = BitBuffer.from_str("1001000110011110") # size = 16

>>> # symbol 0: 0 1 2 3 => 1011

>>> # symbol 1: 0 1 2 3 => 1110

>>> # symbol 2: 3 0 1 2 => 0010

>>> # symbol 3: 2 3 0 1 => 0100

To extract the third symbol (zero based counting, therefore char_ix=2) we use the following com-
mand:

>>> deinterleaved_symbol2 = ddl.extract_interleaved(interleaved, bit_dist=4, char_

↪→dist=3, char_size=4, char_ix=2, block_len=interleaved.size)

>>> str(deinterleaved_symbol2)

'0010'

This function can also be used as a matrix deinterleaver. char_size would then correspond to the
number of rows, bit_distance to the number of columns. And char_distance should be set to 1.

© 2023 PROCITEC GmbH 121 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

Notes

See also RandomInterleaver and RegularInterleaver.

procitec.decoding.extract_interleaved_symbols(data , * , symb_len , symb_dist , group_dist ,
group_size , group_ix , block_len)

Deinterleave modulation symbols (sequences of bits) of an interleaved symbol stream

Parameters

• data (BitBuffer) – interleaved modulation symbols (as a stream of bits)

• symb_len (int) – length of a symbol in bits

• symb_dist (int) – distance between two successive symbols (measured in sym-
bols)

• group_dist (int) – distance between two successive symbol groups (measured in
symbols)

• group_size (int) – length of a symbol group in symbols

• group_ix (int) – index of the symbol group to be extracted (zero based counting)

• block_len (int) – Length of interleaving block in bits. All indices used to access
bits in data are taken modulo this value.

Returns

deinterleaved symbol group

Return type

BitBuffer

procitec.decoding.generate_lfsr_sequence(poly , initial_state , length)

Generate a pseudo-random sequence using a linear feedback shift register (LFSR)

Linear feedback shift registers are defined by polynomials of order n with binary coefficients ci :

p(x) = 1+
n∑
i=1

cix
i

An example for the operation of the LFSR with the polynomial 1 + x5 + x9 is given below. This is also
the mode of operation of this function.

Parameters

• poly (int) – Polynomial of the LFSR as a bit mask where the least significant bit
corresponds to the coefficient of exponent 0. The coefficient for exponent 0 must
be present. The position of the highest bit set (zero based counting) corresponds
to n.

• initial_state (int) – Initial state of the shift register: The first output is com-
puted using initial_state as the state of the shift register.

Must be > 0 and < 2n The least significant bit defines the most recent bit in the shift
register (x1 in the example above), the most significant bit the oldest bit (x9 in the
example above).

122 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

• length (int) – determines the length of the generated sequence

Returns

generated bit sequence

Return type

BitBuffer

Example

Generate a sequence of length 32 using the polynomial x9 + x5 +1 and all ones initial state

>>> from procitec.decoding import generate_lfsr_sequence

>>> seq = generate_lfsr_sequence(0x221, 0b111111111, 32)

>>> print(seq)

00000111101111100010111001100100

procitec.decoding.de_stuff(data , * , length , chain_limit , chain_polarity)

Reverses a bit stuffing, i.e. bits will be removed which are inserted on transmission side to interrupt
longer 1- or 0-sequences

Parameters

• data (BitBuffer) – Input data to be de-stuffed

• length (int) – Length of bit field to de-stuff in data starting with LSB

• chain_limit (int) – Length of a bit sequence, which was meant to be interrupted
by bit stuffing

• chain_polarity (int) – 1 or 0 = Polarity of interrupted bit sequence = inverse
polarity of stuff bit

Returns

• result (BitBuffer) – De-stuffed bit field

• number_stuffs (int) – Number of de-stuffed bits

Examples

>>> from procitec.decoding import de_stuff

>>> from procitec.common.bitbuffer import BitBuffer

>>> stuffed = BitBuffer.from_int(0b10100101111101101,17)

>>> de_stuffed, number = de_stuff(stuffed, length=17, chain_limit=5, chain_

↪→polarity=1)

>>> str(stuffed)

'10110111110100101'

>>> str(de_stuffed)

'10110111111001010'

>>> number

1

© 2023 PROCITEC GmbH 123 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

procitec.decoding.golay_parity_matrix(mat_spec: str)→ List[List[int]]

Returns the transposed P (P^) part of a Golay parity check matrix (H) according to selected input. P
as in H = [P^ | T^]. For reasons of symmetry P = P^ applies.

New in version 21.2.0.

Parameters

mat_spec (str) – Parity matrix specifier string. Supported are the following:

• ”AE3”

• ”C75”

The names are based on the polynoms used to construct them.

Returns

P-Part of Parity Check Matrix as given by input.

Return type

list(list(int))

procitec.decoding.hamming_generator_matrix(m: int)→ List[List[int]]

Returns a generator matrix for systematic hamming code (2m−1,2m−m−1,3) without the systematic
part. The resulting matrix is suitable to use it directly with BlockDecoder.

New in version 22.1.0.

Parameters

m (int) – Number of parity bits of hamming code. Has to be >= 3.

Returns

Generator matrix of hamming code without systematic code part.

Return type

list(list(int))

procitec.decoding.hamming_distance(data1 , data2)

Determine the Hamming distance (number of different bits) of two buffers. An error is raised if the
two buffers differs in size.

Parameters

• data1 (BitBuffer) – first data buffer

• data2 (BitBuffer) – second data buffer

Returns

Hamming distance of data1 and data2

Return type

int

procitec.decoding.hamming_weight(data)

Determine the Hamming weight (number of ones) of a buffer

Parameters

data (BitBuffer) – sequence of bits for which the Hamming weight is to be determined

Returns

Hamming weight of data

Return type

int

124 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.List
https://docs.python.org/3.11/library/typing.html#typing.List
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/typing.html#typing.List
https://docs.python.org/3.11/library/typing.html#typing.List
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

procitec.decoding.time_skip(stream , desired_difference)

Skips the specified amount of time in the given BitStream stream

Parameters

• stream (BitStream) – BitStream, on which time shall be skipped

• desired_difference (float) – Desired time difference in seconds

Returns

The actual skipped amount of time in seconds

Return type

float

procitec.decoding.bit_metric_psk(symbols , table)

Calculates soft bits for PSK constellations.

The soft value of a bit is based on the distance from the symbol of that bit to the next decision
boundary. See also bit_metric_distance().

Parameters

• symbols (array_like) – Soft symbol values in magnitude and phase format (MAG_PHASE)

• table (list(tuple(int, float, float)) or list(tuple(int, int, int))) – Sym-
bol table. The tuple contains the bit pattern and the soft value as a combination of
magnitude and phase, in that order. The length of the list has to be a power of 2
and the maximum number of symbols is 16.

Returns

Hard decided bits and corresponding soft bits in BitBuffer.soft_bits.

Return type

BitBuffer

Example

See bit_metric_distance()

procitec.decoding.bit_metric_distance(symbols , table , format)

Calculates soft bits for arbitrary symbol constellations.

For each symbol and bit within that symbol the two nearest reference symbols with a corresponding
one and zero at the matching bit position are searched for in the given symbol table. The soft value
is based on a linear interpolation between the distances of the received symbol to the 2 reference
symbols.

The resolution of soft bits is 8 bit. The most reliable hard decision for a 0 is represented by +127, the
most reliable decision for a 1 by -127; smaller absolute values indicate a less reliable decision.

See also set_soft_symbols()

Parameters

• symbols (array_like) – Soft symbol values. e.g. data from a SymbolStream

© 2023 PROCITEC GmbH 125 of 158

https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

Analysis Suite PYTHON DECODER DEVELOPMENT

• table (list(tuple(int, float, float)) or list(tuple(int, int, int))) – Sym-
bol table. The tuple contains the bit pattern and the soft value as a combination
of 2 values depending on the symbol format. The length of the list has to be a
power of 2 and the maximum number of symbols is 256. The float representation
(tuple(int, float, float)) is a helper for simplified or more understandable in-
put and internally translated to the tuple(int, int, int) format. See examples
below.

• format (SampleFormat) – symbols and table are expected in this format. Only
MAG_PHASE or FSK are supported.

Returns

Hard decided bits and corresponding soft bits in BitBuffer.soft_bits.

Return type

BitBuffer

Examples

Given are 4 received soft symbols read from a SymbolStream

>>> soft_symbols = apc.symbols.read(size=4)

>>> soft_symbols

[[31632, 160], [35824, 16327], [31152, 65376], [31648, 32416]]

Or in float represantation (16 bit are linear mapped to magnitude range [0, 2] and phase range [0,
2*pi].

>>> import numpy as np

>>> soft_symbols_flt = np.array(soft_symbols) / [2**15, 2**16 /(2*np.pi)]

>>> soft_symbols_flt

[[0.97 0.02]

[1.09 1.57]

[0.95 6.27]

[0.97 3.11]]

The corresponding QPSK symbol table could be

>>> qpsk_tab = [[0b00, 32768, 0],

[0b01, 32768, 16384],

[0b10, 32768, 32768],

[0b11, 32768, 49152]]

>>> qpsk_tab_flt = [[0b00, 1.0, 0*np.pi],

[0b01, 1.0, 1/2*np.pi],

[0b10, 1.0, 1*np.pi],

[0b11, 1.0, 3/2*np.pi]]

The bits for the soft symbols and table can now be calculated using the bit_metric_distance com-
mand.

126 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

>>> from procitec.decoding import bit_metric_distance, MAG_PHASE

>>> bits = bit_metric_distance(np.array(soft_symbols, dtype=np.uint16), qpsk_tab,�
↪→format=MAG_PHASE)

>>> print(bits)

00100001

>>> soft_bits = np.array(bits.soft_bits, dtype=np.int8)

>>> print(soft_bits)

[120 120 -112 112 118 118 118 -118]

The following commands are here equivalent:

>>> bit_metric_distance(np.array(soft_symbols, dtype=np.uint16), qpsk_tab,�
↪→format=MAG_PHASE)

>>> bit_metric_distance(np.array(soft_symbols, dtype=np.uint16), qpsk_tab_flt,�
↪→format=MAG_PHASE)

>>> bit_metric_distance(np.array(soft_symbols_flt, dtype=np.float32), qpsk_tab,�
↪→format=MAG_PHASE)

>>> bit_metric_distance(np.array(soft_symbols_flt, dtype=np.float32), qpsk_tab_flt,

↪→ format=MAG_PHASE)

class procitec.decoding.RandomInterleaver(pattern)

Creates an interleaver used for interleaving or deinterleaving bits or other array-like types.

New in version 21.2.0.

Parameters

pattern (list(int)) – The interleaving pattern used to interleave the input. The largest
value specifies the size of the interleaved output.

deinterleave(data , with_soft=False)

Deinterleaves the data accordingly to the set pattern. This reverses the process of the interleave
function.

For the set pattern p the output is calculated as follows:

out[p[0]] = input[0]

out[p[1]] = input[1]

out[p[2]] = input[2]

...

Parameters

• data (BitBuffer or sequence or 1D-array) – Input data to be deinterleaved.

• data_out (BitBuffer) – Only allowed if data is also a BitBuffer. Instead of return-
ing a new BitBuffer, the result of deinterleaving is written into this buffer if this
parameter is given. Overlapping range of data and data_out is not allowed.

• with_soft (bool) – If the input is a BitBuffer, the soft-bit information is also dein-
terleaved if True. Not allowed if data is not a BitBuffer.

Example

© 2023 PROCITEC GmbH 127 of 158

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

>>> interleaver = ddl.RandomInterleaver([0, 4, 5, 2, 1, 3])

>>> deinterleaved = interleaver.deinterleave(BitBuffer.from_str("110101"))

>>> print(deinterleaved)

101110

To clarify the interleaving process a simple list is deinterleaved as follows:

>>> interleaver = ddl.RandomInterleaver([2, 1, 3, 0])

>>> deinterleaved = interleaver.deinterleave(['a', 'b', 'c', 'd',])

>>> print(deinterleaved)

['d', 'b', 'a', 'c']

interleave(data , data_out=None , with_soft=False)

Interleaves the data accordingly to the set pattern. This function can also be used for deinter-
leaving.

For the set pattern p the output is calculated as follows:

out[0] = input[p[0]]

out[1] = input[p[1]]

out[2] = input[p[2]]

...

Parameters

• data (BitBuffer or sequence or 1D-array) – Input data to be interleaved.

• data_out (BitBuffer) – Only allowed if data is also a BitBuffer. Instead of re-
turning a new BitBuffer, the result of interleaving is written into this buffer if this
parameter is given. Overlapping range of data and data_out is not allowed.

• with_soft (bool) – If the input is a BitBuffer, the soft-bit information is also inter-
leaved if True. Not allowed if data is not a BitBuffer. Default is False.

Return type

Interleaved data or data_out if data_out is given.

Example

>>> interleaver = ddl.RandomInterleaver([0, 4, 5, 2, 1, 3])

>>> interleaved = interleaver.interleave(BitBuffer.from_str("101110"))

>>> print(interleaved)

110101

Several identical bit positions are allowed.

>>> interleaver = ddl.RandomInterleaver([0, 4, 4, 5, 5, 3, 4, 0])

>>> interleaved = interleaver.interleave(BitBuffer.from_str("101110"))

>>> print(interleaved)

11100111

To clarify the interleaving process a simple list is interleaved as follows:

128 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#bool

PYTHON DECODER DEVELOPMENT Analysis Suite

>>> interleaver = ddl.RandomInterleaver([2, 1, 3, 0])

>>> interleaved = interleaver.interleave(['a', 'b', 'c', 'd',])

>>> print(interleaved)

['c', 'b', 'd', 'a']

property deinterleaved_size

the set interleaving pattern

property interleaved_size

the number of interleaved bits

property pattern

the set interleaving pattern

class procitec.decoding.RegularInterleaver(size , offset , start=0 , count=None)

Creates an interleaver used for interleaving or deinterleaving bits or other array-like types in a regu-
lar sequence.

New in version 21.2.0.

Parameters

• size (int) – Block size of the interleaver.

• offset (int) – Offset between two following bits or elements.

• start (int) – Start index of first bit or element to interleave. The default is 0.

• count (int) – Number of elements to interleave. If None the given size is used for
count. The default is None.

deinterleave(data , with_soft=False)

Deinterleaves the data This reverses the process of the interleave function.

For the set pattern p the output is calculated as follows:

out[(start + offset * 0) % size] = input[0]

out[(start + offset * 1) % size] = input[1]

out[(start + offset * 2) % size] = input[2]

...

out[(start + offset * (count - 1)) % size] = input[count - 1]

Parameters

• data (BitBuffer or sequence or 1D-array) – Input data to be deinterleaved.

• data_out (BitBuffer) – Only allowed if data is also a BitBuffer. Instead of return-
ing a new BitBuffer, the result of deinterleaving is written into this buffer if this
parameter is given. Overlapping range of data and data_out is not allowed.

• with_soft (bool) – If the input is a BitBuffer, the soft-bit information is also dein-
terleaved if True. Not allowed if data is not a BitBuffer.

Example

To clarify the interleaving process a simple list is deinterleaved as follows:

© 2023 PROCITEC GmbH 129 of 158

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

>>> interleaver = ddl.RegularInterleaver(size=5, offset=2, start=1)

>>> deinterleaved = interleaver.deinterleave(['a', 'b', 'c', 'd', 'e'])

>>> print(deinterleaved)

['c', 'a', 'd', 'b', 'e']

interleave(data , data_out=None , with_soft=False)

Interleaves the data. This function can also be used for deinterleaving.

For the set pattern p the output is calculated as follows:

out[0] = input[(start + offset * 0) % size]

out[1] = input[(start + offset * 1) % size]

out[2] = input[(start + offset * 2) % size]

...

out[count - 1] = input[(start + offset * (count - 1)) % size]

Parameters

• data (BitBuffer or sequence or 1D-array) – Input data to be interleaved.

• data_out (BitBuffer) – Only allowed if data is also a BitBuffer. Instead of re-
turning a new BitBuffer, the result of interleaving is written into this buffer if this
parameter is given. Overlapping range of data and data_out is not allowed.

• with_soft (bool) – If the input is a BitBuffer, the soft-bit information is also inter-
leaved if True. Not allowed if data is not a BitBuffer. Default is False.

Return type

Interleaved data. data_out if data_out is given.

Example

>>> interleaver = ddl.RegularInterleaver(size=5, offset=2, start=1)

>>> interleaved = interleaver.interleave(BitBuffer.from_str("10100"))

>>> print(interleaved)

00110

To clarify the interleaving process a simple list is interleaved as follows:

>>> interleaver = ddl.RegularInterleaver(size=5, offset=2, start=1)

>>> interleaved = interleaver.interleave(['a', 'b', 'c', 'd', 'e'])

>>> print(interleaved)

['b', 'd', 'a', 'c', 'e']

property count

the set count

property offset

the set offset

property size

the set size

property start

the set start

130 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#bool

PYTHON DECODER DEVELOPMENT Analysis Suite

2.3.7. File Output Helpers

class procitec.decoding.pcapFile(file , link_type , byteorder='little')
A class to generate and write a pcap file.

Parameters

• file (path-like or file-like object) – Path-like objects are passed to Python’s
open() function. File-like objects are assumed to be already opened for writing in
binary mode.

• link_type (int) – a link-layer header type as defined by libpcap (see http://www.

tcpdump.org/linktypes.html)

• byteorder ({"big", "little"}, optional) – Order of bytes (endianess) when
writing the file’s global header and the headers for each packet. The default value
is the system’s byte order.

Notes

Path-like objects are described in https://docs.python.org/3/glossary.html#term-path-like-object

File-like objects are described in https://docs.python.org/3/library/io.html. It is sufficient to
provide an implementation of write(), close() and the attribute closed.

close()→ None
Close the pcap file.

write(packet_data: bytes | bytearray, timestamp_sec: int, timestamp_usec: int)→ None
Write a packet to the pcap file.

Parameters

• packet_data (bytes or bytearray) – Packet data to be written to the pcap file.
packet_data is not modified in any way. It is up to the caller to ensure that the
data has the correct byte order (endiannes).

The length of a data packet is limited to _SNAPLEN.

• timestamp_sec (int) – Timestamp of the packet as number of seconds since
1970-01-01T00:00:00Z. This is also known as known as UNIX time, Epoch time
or seconds since the Epoch. The timezone must be UTC (+00:00).

• timestamp_usec (int) – Timestamp of the packet in microseconds as a positive
offset to timestamp_sec. This value must be smaller than 1000000.

_SNAPLEN = 1073741824

Maximum packet length in bytes

Type

int

property byteorder: str

Order of bytes (endianess) when writing headers inside the pcap file. Either “little” or "big".

Type

str

property closed: bool

True if the pcap file is closed, False otherwise

Type

bool

© 2023 PROCITEC GmbH 131 of 158

https://docs.python.org/3.11/library/functions.html#open
https://docs.python.org/3.11/library/functions.html#int
http://www.tcpdump.org/linktypes.html
http://www.tcpdump.org/linktypes.html
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/io.html
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytearray
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytearray
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool

Analysis Suite PYTHON DECODER DEVELOPMENT

2.3.8. Bit Formatting

class procitec.decoding.PrettyBitFormatter(data_format: str = 'H' , num_columns_per_line: int =
16 , * , num_chars_per_column: int | None = None ,
separator: str = ' ' , column_prefix: str = '' ,
always_full_lines: bool = False , line_prefix: str | None
= None , line_postfix: str | None = None , msb_first:
bool = False , show_flush: bool = True)

The PrettyBitFormatter is used to format a continuous stream of bits or a single block of bits into a
pretty textual representation.

The input bits are divided into blocks of bits or columns. It is possible to specify the number of char-
acters per column and the number of columns. A single-line output is also possible.

New in version 22.2.0.

Parameters

• data_format (str, optional) – Specifies the format of the data. A hexadecimal
or binary output is possible. For hexadecimal format (0-9, A-F) use “h” or “H”. If
the upper case letter is used, the hexadecimal output also uses upper case letters
instead of lower case letters for A-F. For the binary format(0,1) use “b”. The default
is “H”.

• num_columns_per_line (int or None, optional) – Specifies the number of columns
per line. If None is passed, everything is written in one line and there is no line
break. The default is 16.

• num_chars_per_column (int or None, optional) – Specifies the number of char-
acters per column or block. If None is passed, 8 bits per column are used. The
default is None.

• separator (str, optional) – Separator between the columns. The default is ” “.

• column_prefix (str, optional) – Arbitrary prefix before each column. The de-
fault is “”.

• always_full_lines (bool, optional) – If True is passed, new characters are only
returned when formatting of the whole line is completed. Must not be True if
num_columns_per_line is None. The default is False.

• line_prefix (str or None, optional) – Must be None, “line” or “address”. If
None is passed there is no prefix before each line. With “line” line numbers are
printed. With “address” the byte addresses are output hexadecimal. The default is
None.

• line_postfix (str or None, optional) – Must be None or an encoding string. If
None is passed, there is no line postfix. Otherwise, after each line the bits with the
given encoding are output interpreted as characters. Preferably “ascii” should be
passed, but “utf8” is also possible. The encodings offered by Python are supported.
However, only single lines are interpreted in the output. This can be problematic
with multibyte encodings. Non-printable characters or incorrect characters are
replaced with “.”. The default is None.

• msb_first (Bool, optional) – Specifies whether the MSB (most significant bit) or
the LSB (least significant bit) per column should be output first. The default is False.

• show_flush (True, optional) – Specifies whether zero characters are to be out-
put during flush if the number of bits does not completely fill the characters. The
default is True.

132 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str

PYTHON DECODER DEVELOPMENT Analysis Suite

__call__(data: BitBuffer | None = None , flush: bool = False)→ str

See format_data

append(data: BitBuffer)→ None

Adds bits to the internal buffer for later output. These can also be added directly during format-
ting,

Parameters

data (BitBuffer) – Bits to appended.

Return type

None.

format_data(data: BitBuffer | None = None , flush: bool = False)→ str

Formats the data into a nice readable format and returns it as a string. These strings should be
output one after the other without line breaks. Line breaks are included in the returned strings
unless single line formatting is used.

Parameters

• data (BitBuffer, optional) – Bits to append. If None is passed no bits are added
to the output. This is useful if you want to flush the last line. The default is None.

• flush (bool, optional) – If True is passed, the last line or the trailing bits which
could not be output due to padding are flushed. The default is False.

Returns

output – Pretty formatted string representation.

Return type

str

reset()→ None

Resets the formatter to the initial state.

Return type

None.

2.3.9. Miscellaneous

class procitec.decoding.SampleFormat

Members:

MAG_PHASE : Magnitude and Phase, commonly used for PSK modulations

I_Q : Real and imaginary components, useful for QAM modulations

FSK : Value discriminating between frequencies/tones for FSK modulations

FSK = <SampleFormat.FSK: 3>

I_Q = <SampleFormat.I_Q: 2>

MAG_PHASE = <SampleFormat.MAG_PHASE: 1>

property name

property value

© 2023 PROCITEC GmbH 133 of 158

https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None

Analysis Suite PYTHON DECODER DEVELOPMENT

exception procitec.decoding.EndOfDataError

This exception is used by the decoder runtime to signal the end of production or search. It is raised
when requesting input data or other information from the runtime after the BitStream, apc.data, has
been closed. The runtime expects the decoder to terminate and will not report uncaught instances
of the exception as an error.

EndOfDataError must not be raised by the decoder directly. It may, however, be caught (and re-
raised) to perform clean-up tasks at the end of production. Note that upon occurrence of the excep-
tion no more data can be read and most of the runtime functions are ineffective. Only the output-
related parts of the runtime object should be accessed. This includes for example apc.output and
apc.production_memory.

EndOfDataError is a subclass of procitec.common.bitbuffer.EndOfStreamError.

2.4. Miscellaneous

class procitec.common.ProTS(*args)

This class represents an absolute point in time (timestamp) based on the UNIX-epoch and the frac-
tional part thereof. It is mostly used as meta-data for signals and decoding events. Construction
needs either the full and factorial part of the second or, for convince, the human readable compo-
nents of the corresponding date and time elements, see below.

Instance of this class can be formatted to a string or converted to regular datetime.datetime ob-
jects.

1. ProTS(seconds, fraction=0)

Creates a timestamp from seconds (int) and fraction (float) of a second elapsed since
1970-01-01T00:00:00:000Z.

2. ProTS(year, month, day, hour, minute, second, millisecond=0)

Creates a timestamp specified by year, month, day, hour, minute, second and optionally
millisecond; all parameters are of type int. If the date is not valid, the timestamp is set
to 1970-01-01T00:00:00:000Z.

The operators - and + allow to decrease or increase a timestamp with the specified amount of sec-
onds (float). The subtraction of two timestamps results in a time difference in seconds (float). And it
is possible to compare two timestamps using the <, > and == operators.

__format__(format)

Returns the timestamp as a formatted string, defined by the given format specifier

Parameters

format (str, optional) – Format specifier string. The default format specifier
"yyyy-MM-ddThh:mm:ss.zzzZ" conforms to ISO 8601.

The following format codes are supported:

134 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/datetime.html#datetime.datetime
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str

PYTHON DECODER DEVELOPMENT Analysis Suite

Date

yyyy the year as four digit number

yy the year as two digit number (00-99)

MM the month as number with a leading zero (01-12)

M the month as number without a leading zero (1-12)

dd the day as number with a leading zero (01-31)

d the day as number without a leading zero (1-31)

Time

hh the hour with a leading zero (00-23 or 01-12 if AM/PM display)

h the hour without a leading zero (0-23 or 1-12 if AM/PM display)

mm the minute with a leading zero (00-59)

m the minute without a leading zero (0-59)

ss the second with a leading zero (00-59)

s the second without a leading zero (0-59)

zzz the milliseconds with leading zeroes (000-999)

zzzzzz the microseconds with leading zeroes (000-999999)

Note: Excluded time components are truncated, not rounded.

Examples

>>> from procitec.common import ProTS

>>> t = ProTS(224133255, 0.9265359)

>>> print(format(t, 'yyyy-MM-ddThh:mm:ss.zzzZ'))

1977-02-07T03:14:15.926Z

>>> print(format(t, 'yyyy/dd/MM - hh:mm:ss.zzzzzz'))

1977/07/02 - 03:14:15.926535

>>> print(f"{t:hh}h {t:mm}m {t:ss}s")

03h 14m 15s

__str__()

Returns the timestamp as an ISO 8601 formatted string including date and time.

add_seconds()

add seconds to the time stamp

datetime()

Convert the timestamp to datetime.datetime with the timezone as UTC

to_float()

return as seconds since 1970 including fraction

© 2023 PROCITEC GmbH 135 of 158

https://docs.python.org/3.11/library/datetime.html#datetime.datetime

Analysis Suite PYTHON DECODER DEVELOPMENT

property fraction

Fractional part

Type

float

property seconds

Full seconds part

Type

int

procitec.common.find_library(lib: PathLike | str)→ str

Find the path of a dynamic library

The search order is:

• If lib is an absolute path and points to an existing file, the path is returned as is.

• If lib is a filename only or a relative path with a filename, system-specific prefixes and exten-
sions are added to the filename. This means that the passed filename must be the name of the
library without any system-specific portions. The library will be searched relatively in

– the folder decoders contained in the user folder

– and in the folder extdecod contained in the installation folder of the APC.

Parameters

lib (os.PathLike) – The following can be passed:

• an absolute path to a file

• a filename only without any system-specific suffixes and extensions for a library

• a relative path whose filename (everything after the last slash) is as above

Returns

Path of the found library including system-specific suffixes and extensions. FileNot-
FoundError is raised if the library can not be found.

Return type

os.PathLike

Examples

Assume that the user folder is USERNAME\go2SIGNALS\go2DECODE XX.Y and that the installation
folder of the APC is C:\Program Files\procitec\go2DECODE. (/opt/procitec/go2decode in case of
Linux)

>>> import procitec.common

>>> procitec.common.find_library("decod")

The code above will check if any of the following files exist and returns the corresponding path:

• USERNAME\go2SIGNALS\go2DECODE XX.Y\decoders\decod.dll

• C:\Program Files\procitec\go2DECODE\extdecod\decod.dll

Relative paths are searched as shown below

136 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/os.html#os.PathLike
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/os.html#os.PathLike
https://docs.python.org/3.11/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.11/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.11/library/os.html#os.PathLike

PYTHON DECODER DEVELOPMENT Analysis Suite

>>> procitec.common.find_library("./vendor/decod") # leading "./" may be left out

• USERNAME\go2SIGNALS\go2DECODE XX.Y\decoders\vendor\decod.dll

• C:\Program Files\procitec\go2DECODE\extdecod\vendor\decod.dll

>>> procitec.common.find_library("../vendor/a/decod")

• USERNAME\go2SIGNALS\go2DECODE XX.Y\decoders\..\vendor\a\decod.dll

• C:\Program Files\procitec\go2DECODE\extdecod\..\vendor\a\decod.dll

class procitec.common.memprod.MemProdHandler

Production Memory Backend

procitec.common.memprod.create(path , enabled=True)→ MemProdHandler

Create a production memory handler

Parameters

• path (str or os.PathLike) – Directory to store production memory files

• enabled (bool, optional) – control whether files are actually written

Return type

MemProdHandler

procitec.packaging.builder.packager.create_decoder_package(decoder_filepath , output_path: str
= '.' , comment: str = '')→
Tuple[Path, List[str]]

Creates a decoder package file (*_dec.pkg) from a given decoder. The decoder imports are analyzed
and all needed modules are bundled into the package.

Parameters

• decoder_filepath (str or path-like) – The decoder to pack.

• output_path (str) – Where to save the decoder package.

• comment (str) – A comment saved in the decoder packages header.

Returns

• decoder_package (Path) – The path of the created package.

• non_env_module_names (list[str]) – Imported modules in decoder which are not
available in the default APC python environment. Consider adding it to the envi-
ronment before running the decoder.

Raises

SyntaxError – In case of a syntax error in decoder source code and dependencies.

© 2023 PROCITEC GmbH 137 of 158

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/os.html#os.PathLike
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Tuple
https://docs.python.org/3.11/library/pathlib.html#pathlib.Path
https://docs.python.org/3.11/library/typing.html#typing.List
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/exceptions.html#SyntaxError

Analysis Suite PYTHON DECODER DEVELOPMENT

3. Porting Existing DDL Decoders to pyDDL

3.1. Automatic Conversion

The IDE for the development of pyDDL decoders (see Decoder Development Using Spyder) provides a tool
for automatic conversion of a DDL decoder to pyDDL. It can be invoked from the File → Convert DDL

Decoder menu entry. You will be asked to select a DDL decoder to convert. The conversion may take some
time.

The automatic conversion is able to convert most DDL constructs to equivalent pyDDL code:

• Conditional branches

• for/while loops, including break statements

• switch case blocks

• User defined functions (chapter 5.13.9 in the DDL manual)

• Subroutines (chapters 5.13.2 and 5.13.3 in the DDL manual)

• Symbol Tables (chapter 5.17 in the DDL manual)

• Many DDL functions

Please note that there are limitations, the notable ones being:

• GoTo() statements can not be converted as they are not available in Python.

• Pre-Processing (chapters 4.1 and 5.2 in DDL manual) is not converted.

• Manipulation of variables (assignments, arithmetic and logical operations) are converted. However,
the converter may make wrong assumptions about the intended data type in the DDL code.

DDL code which can not be converted is put in comments in the converted Python code. Comments from
the DDL decoder are retained.

The produced code is likely not runnable. This is especially true for decoders with a complex execution flow
due to GoTo() statements. The translation process basically converts DDL statements to corresponding
pyDDL statements as listed in Quick Reference . This may result in suboptimal code and simplifications
may be made.

3.2. Quick Reference

This section provides a quick reference for the translation of DDL code to pyDDL. Each section hereafter
corresponds to chapter in the DDL Manual. A table of DDL commands and the corresponding pyDDL com-
mand is given.

• Basic Programming and Language Elements

• Pre-Processing Functions

• Search Functions

138 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

• Read Functions

• Read Pointer Functions

• Fractionize Frame

• Reformat and Process Data Packages

• Arrays

• Analyzing, Code Checking and FEC

• Universal Decoding of Block Codes

• Functions for Bit Manipulation

• Operators

• Branch Commands

• Output Functions

• System Functions

• System Variables

• Symbol Tables

• Commands to Control Demodulator Parameters

• Knowledge-Base Demodulator Settings

• Special Commands for Morse Post-Processing

• Measurement Functions

• External Program Control and Interfacing

• Dynamic Link Libraries

• CVSD Speech Decoding

• Special Commands for Data Base Support

• Soft Decision Decoding

© 2023 PROCITEC GmbH 139 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

3.2.1. Basic Programming and Language Elements

DDL pyDDL

Decoder Input Values apc.parameters

Input Buffer apc.data

Read Pointer apc.data.position

Variables Python variables

LSB-First Logic (same)

Value Annotations Python literals -

Bit Patterns Python int literals or str with 01x (see
search_pattern())

Bit-Reverse Annotations

• N/A for Python int

• buffer[::-1] for BitBuffer

Labels N/A (no more GoTo())

Comments Comments use #

3.2.2. Pre-Processing Functions

DDL pyDDL

PPInvert preprocessing.invert()

PPDescramble preprocessing.descramble()

PPBitCodeNRZ preprocessing.nrz_decode()

PPBitCodeInvNRZ preprocessing.nrz_encode()

PPBitCodeManch NOT IMPLEMENTED

PPBitCodeBIPH NOT IMPLEMENTED

PPConvertSymbol preprocessing.convert_symbols()

PPConvertDiff preprocessing.differential_encode()

PPSymbolBitReversal preprocessing.reverse_symbol_bits()

PPIsLastCall catch EndOfDataError; see Performing Tasks on Decoder Exit for example

PPSeparateChannels apc.input_channel_mode()

PPSelectInpPacket NOT IMPLEMENTED

PPRecombineChannels NOT IMPLEMENTED

PPExtractChannels apc.input_channel_mode()

140 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

3.2.3. Search Functions

DDL pyDDL

SearchPattern search_pattern()

SearchPatternVar search_pattern()

SearchSymbolTab search_alphabet()

SearchInterlSymbolTab search_alphabet()

SearchSymbolSignPattern search_alphabet()

SearchFrameRepeat NOT IMPLEMENTED

SearchBurst search_burst()

SearchBurstPause search_burst_end(), search_burst_start()

SearchParity NOT IMPLEMENTED, but see cis_14 decoder for substitute

SearchPolynom search_lfsr_sequence()

SearchVectPatternMatch OBSOLETE

3.2.4. Read Functions

DDL pyDDL

Get-
Frame

apc.data.read()

GetDeIn-
terl

apc.data.read() + extract_interleaved()

GetSym-
bol

apc.data.rewind(-apc.data.position % apc.symbols.bits_per_symbol) and then
apc.data.read(num_symbols * apc.symbols.bits_per_symbol)

GetBurst-
Symbol

use search_burst_end() without consuming and then apc.data.read() see twinplex de-
coder

© 2023 PROCITEC GmbH 141 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

3.2.5. Read Pointer Functions

DDL pyDDL

GetPos apc.data.position

SetPos apc.data.set_position()

Rewind apc.data.rewind()

SymbolSync combine position with bits_per_symbol and apc.data.consume()

ChannelSync apc.input_channel_sync()

GetTime apc.data.time()

TimeSkip procitec.decoding.time_skip()

SelectInpBuffer apc.data.read(... ,channel_index=...)

ClearInputBuffer NOT IMPLEMENTED

BufferStatus procitec.common.bitbuffer.BitStream.available

SymbolSize apc.symbols.bits_per_symbol

3.2.6. Fractionize Frame

DDL pyDDL

Extract slicing in BitBuffer

ExtractInterl extract_interleaved()

ExtractInterlLong extract_interleaved()

ExtractSymbInterlLong extract_interleaved_symbols()

ExtractPattern extract_pattern()

142 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

3.2.7. Reformat and Process Data Packages

DDL pyDDL

Destuff de_stuff()

Join bitbuffer.concat()

Place slice-assignment on BitBuffer

Insert bitbuffer.insert()

ConvertSymbol convert_symbols()

VectorRead Python list etc.

VectorWrite Python list etc.

FindBytes convert data to bytes or str and use find()

method

StringLen convert data to bytes or str type and use len

ReverseByteOrder

• bitbuffer.reverse_symbol_order()

• convert data to bytes and use reversed()

or ...[::-1]

MirrorBytes

• bitbuffer.mirror_symbols()

• reversed slicing in BitBuffer

• alphabet with reversed bitorder (MSB/LSB)

3.2.8. Arrays

DDL pyDDL

ArrayDef

• Python list, tuple, bytes, bytearray

• BitBuffer

© 2023 PROCITEC GmbH 143 of 158

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#len
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#reversed
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytearray

Analysis Suite PYTHON DECODER DEVELOPMENT

3.2.9. Analyzing, Code Checking and FEC

DDL pyDDL

TestPolynom NOT IMPLEMENTED

CorrectMajor-
ity

correct_majority()

CorrectExtGo-
lay

BlockDecoder in junction with golay_parity_matrix(), see Using Golay Block De-
coder

CorrectFECA NOT IMPLEMENTED

CheckCRC crc()

CheckHamm BlockDecoder in junction with hamming_generator_matrix(), see Using Hamming
Block Decoder

CorrectHamm BlockDecoder in junction with hamming_generator_matrix(), see Using Hamming
Block Decoder

Weight hamming_weight()

AddDescram-
ble

generate_lfsr_sequence()

IsTabSymb procitec.decoding.Alphabet.decode()

ViterbiHDD ViterbiDecoder

CorrectViterbi ViterbiDecoder

CorrectViter-
biSoft

ViterbiDecoder

CorrectBCH BCHDecoder

CorrectRS ReedSolomonDecoder

CorrectRSext ReedSolomonDecoder

BitCorrelation bit_correlation_and_maxima()

3.2.10. Universal Decoding of Block Codes

DDL pyDDL

InitBlockCode BlockDecoder

CorrectBlockCode BlockDecoder

CloseBlockCode BlockDecoder

144 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

3.2.11. Functions for Bit Manipulation

DDL pyDDL

RotLeft lshift(circular=True)

RotRight rshift(circular=True)

© 2023 PROCITEC GmbH 145 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

3.2.12. Operators

DDL pyDDL

Operator Assignment Python has no custom assignment operator, ob-
ject are never copied on assignment

Operators Addition, Subtraction, Multiplication,
Division, Modulo

Python int

Operators Smaller, Smaller or Equal, Greater, . . .

• BitBuffer supports ==

• Python int

Operators Bitwise And, Bitwise Or, Exclusive Or

• BitBuffer supports bit operators &, | and ^

on int or another BitBuffer

• Python int; note: “unlimited” precision

• bitwise_and(), bitwise_or(), bit-

wise_xor()

Operators Bitwise Negation

• invert()

• Python int; note: careful with negative val-
ues

Operators Shift Left

• lshift()

• BitBuffer << int, BitBuffer <<= int

• Python int; note: “unlimited” precision

Operators Shift Right

• rshift()

• BitBuffer >> int, BitBuffer >>= int

• Python int; note: “unlimited” precision,
careful with negative values

Operators Logical Negation Python not

Operators Logical And, Logical Or Python and, or

146 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/functions.html#int

PYTHON DECODER DEVELOPMENT Analysis Suite

3.2.13. Branch Commands

DDL pyDDL

Unconditional Branch Not Available - no more GoTo()

Subroutine Branch Python functions

Return from Subroutine Python return

Conditional Branches Python if

While Loops Python while

For Loops Python for

Switch Case Blocks Python if...elif...else

Break Instruction Python break

User-Defined Functions Python def function_name()

Return Python return

3.2.14. Output Functions

DDL pyDDL

SetOutBuf Python str or bytearray

OutTab procitec.decoding.Alphabet.decode() + apc.output.NAME()

OutTabHuffman procitec.decoding.Alphabet.decode() + apc.output.NAME()

OutText apc.output.NAME()

OutVal apc.output.NAME() + Python formatting

OutValForm apc.output.NAME() + Python formatting

OutTimeStamp apc.output.NAME() + Python formatting + ProTS

OutDateStamp apc.output.NAME() + Python formatting + ProTS

OutDateTime apc.output.NAME() + Python formatting + ProTS

ClearOutputBuffer OBSOLETE

Output Character Sets Python bytes.decode

BinFileInit apc.production_memory.open() in with (context manager)

BinFileOut mem_file.write()

BinFileXMLOut OBSOLETE, use e.g. ElementTree

BinFileXMLOpen OBSOLETE, see above

BinFileXMLClose OBSOLETE, see above

BinFileClose mem_file.close()

BinFileReport apc.production_memory.report_file()

© 2023 PROCITEC GmbH 147 of 158

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#bytearray
https://docs.python.org/3.11/library/stdtypes.html#bytes.decode
https://docs.python.org/3.11/library/xml.etree.elementtree.html#module-xml.etree.ElementTree

Analysis Suite PYTHON DECODER DEVELOPMENT

3.2.15. System Functions

DDL pyDDL

Sync apc.modem.sync()

Ident apc.modem.ident()

IdentAt apc.modem.ident(...)

Accept apc.modem.accept()

AcceptAt apc.modem.accept(...)

Fail apc.modem.no_sync()

StopModem apc.modem.stop()

Quality mean_quality()

SearchMode apc.current_mode

ExtendSearch apc.extend_search()

SetTimeOut apc.set_timeout()

FlushOut apc.output.flush()

SetAutoFlush OBSOLETE

SetProdHoldTime apc.set_production_hold_time()

ErrExit Python raise or exit()

Version apc.version

BurstStartAt apc.burst_start_time() (ProTS or bit position)

BurstEndAt apc.burst_end_time() (see above)

IgnoreBurstDetector apc.ignore_burst_detector()

3.2.16. System Variables

DDL pyDDL

_auto_invert moved to search functions

_invert moved to search functions

_idweight apc.modem.ident(weight=...)

_burststart use search_burst() beforehand

_burstend use search_burst() beforehand

_class apc.decoder_properties.add('class', "ARQ")

_mode apc.decoder_properties.add('mode', "SitorB")

148 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

3.2.17. Symbol Tables

DDL pyDDL

Table Attributes and Table Switches procitec.decoding.Alphabet

List of Table Values procitec.decoding.Alphabet

See Converting Alphabets for examples how to port tables defined in DDL.

3.2.18. Commands to Control Demodulator Parameters

DDL pyDDL

SetDemodType apc.demodulator.modify

ReadDemodType apc.demodulator.parameters

SetDemodPara apc.demodulator.modify

SetDemodParaSet apc.demodulator.modify

ReadDemodPara apc.demodulator.parameters

ReadDemodParaSet apc.demodulator.parameters

ReadDemodAck OBSOLETE, check is performed automatically by apc.demodulator.modify

WaitDemodAck OBSOLETE, check is performed automatically by apc.demodulator.modify

RewindDemod apc.demodulator.modify

ReadDemodRewindAck OBSOLETE, check is performed automatically by apc.demodulator.modify

WaitDemodRewindAck OBSOLETE, check is performed automatically by apc.demodulator.modify

SaveDemod OBSOLETE, see example in apc.demodulator.modify

RecallDemod OBSOLETE, see example in apc.demodulator.modify

SetBurstPreamble apc.demodulator.set_burst_preamble

Note:

3.2.19. Knowledge-Base Demodulator Settings

DDL pyDDL

PSKFilter apc.demodulator.set_filter

SetTrainingPattern apc.demodulator.set_training_pattern

© 2023 PROCITEC GmbH 149 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

3.2.20. Special Commands for Morse Post-Processing

DDL pyDDL

Check_AR NOT IMPLEMENTED

Check_CallSeq NOT IMPLEMENTED

3.2.21. Measurement Functions

DDL pyDDL

StartMeas (Optional) NOT IMPLEMENTED

WaitMeasResult (Optional) NOT IMPLEMENTED

ReadMeasResult (Optional) NOT IMPLEMENTED

3.2.22. External Program Control and Interfacing

DDL pyDDL

ProcLoad Python subprocess

ProcUnload Python subprocess

ProcIsRunning Python subprocess

ProcWrite Python subprocess

ProcWriteBin Python subprocess

ProcSelectChannel Python subprocess

ProcRead Python subprocess

ProcReadWord Python subprocess

ProcReadLine Python subprocess

ProcCheckInput Python subprocess

ProcFlushInput Python subprocess

ProcCheckError Python subprocess

ProcBytesToWrite Python subprocess

ProcBytesToRead Python subprocess

ProcWaitForResult Python subprocess

ProcCloseWriteChannel Python subprocess

150 of 158 © 2023 PROCITEC GmbH

https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess
https://docs.python.org/3.11/library/subprocess.html#module-subprocess

PYTHON DECODER DEVELOPMENT Analysis Suite

3.2.23. Dynamic Link Libraries

See Using DLLs/Shared Libraries for a guide.

DDL pyDDL

LibLoad Python ctypes and find_library()

LibFunction Python ctypes

Creating a User Library Python extension modules

Errors in the Library Code Python Exceptions

3.2.24. CVSD Speech Decoding

DDL pyDDL

CVSDInit NOT IMPLEMENTED

CVSDOut NOT IMPLEMENTED

CVSDClose NOT IMPLEMENTED

3.2.25. Special Commands for Data Base Support

DDL pyDDL

NextUnit apc.output.xml(f"ch{channel:03d}-infounit", "")

3.2.26. Soft Decision Decoding

DDL pyDDL

DefineSoftSymbols apc.demodulator.set_soft_symbols

SearchSoftPattern search_pattern_soft()

SearchSoftPatternVar search_pattern_soft()

GetMagPhase apc.symbols.read

GetFrequency apc.symbols.read

BitMetricPSK bit_metric_psk()

BitMetricLLR bit_metric_distance()

BitsSoft2Hard hard decided bits included in bit_metric_xxx() functions

SymbolsSoft2Hard NOT IMPLEMENTED

CalcNoiseRef NOT IMPLEMENTED

© 2023 PROCITEC GmbH 151 of 158

https://docs.python.org/3.11/library/ctypes.html#module-ctypes
https://docs.python.org/3.11/library/ctypes.html#module-ctypes

Analysis Suite PYTHON DECODER DEVELOPMENT

3.3. Migration Guide

This section contains a collection of migration guides, each focusing on a different part of the DDL func-
tionality and how it may be ported to Python and pyDDL.

3.3.1. Search pattern

This section outlines differences in the search_pattern() command to the corresponding DDL command
SearchPattern when using auto_invert. The DDL variant will search in the normal bit stream until the
gap limit first and if no match is found will rerun the search on the inverted bit stream second. In case of
pyDDL the search will be carried in parallel on the normal and the inverted bit stream. This may result in
case of a short search pattern to different results.

3.3.2. Performing Tasks on Decoder Exit

This section describes how decoders using the DDL command PPIsLastCall() can be ported to pyDDL.
Typical use-cases are closing opened files and reporting data collected during production.

pyDDL decoders are usually terminated by raising the exception procitec.decoding.EndOfDataError

from the runtime. This exception may be caught to perform actions just before the decoder exists.

The code below shows an exemplary structure that calls a function, last_call(), before termination:

import procitec.decoding as ddl

some_obj = ... # requires explicit action before exit

def main():

... # uses some_obj

def last_call():

example

apc.output.text1(some_obj.dump_results())

apc = ddl.runtime.APC()

try:

while True:

main()

except ddl.EndOfDataError:

last_call()

Actions performed in last_call() usually depend on state or objects collected in main(). In the example
above this is represented by a module global object, some_obj. Alternatively, main() and last_call() can
be methods of a class and some_obj an attribute of the same class.

3.3.3. Using Golay Block Decoder

This section briefly outlines an example of implementing a Golay Block decoder.

152 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

from procitec.decoding import BlockDecoder, golay_parity_matrix

golay_dec = BlockDecoder(golay_parity_matrix('AE3'), 8) # using Golay Block Decoder�
↪→with 'AE3' matrix.

3.3.4. Using Hamming Block Decoder

This section briefly outlines an example of implementing a Hamming Block decoder.

from procitec.decoding import BlockDecoder, hamming_generator_matrix

hamming3_dec = BlockDecoder(hamming_generator_matrix(3), 3) # using Hamming Block�
↪→Decoder with Hamming code (7, 4, 3).

hamming4_dec = BlockDecoder(hamming_generator_matrix(4), 3) # using Hamming Block�
↪→Decoder with Hamming code (15, 11, 3).

3.3.5. Converting Alphabets

Converting an existing alphabet from DDL to pyDDL is a straightforward substitution of code syntax. In
DDL, all alphabets are specified at the end of the decoder source file with a syntax as shown in the example
below.

ALPHA_DEF(123)

BitNo = 7

NoLevels = 2

ErrSymb = _

TABLE

06_h, <ACK>, 3

15_h, <NAK>, 5

30_h, 0, 9

31_h, 1, 8

32_h, <L2>, <L1>

ENDTABLE

END_ALPHA_DEF

In pyDDL the same alphabet is defined with a builtin Python dict and procitec.decoding.Alphabet as
follows

import procitec.decoding as ddl

L = ddl.LEVEL

alphabet123 = ddl.Alphabet(

{

0x06: ['<ACK>', '3'],

0x15: ['<NAK>', '5'],

0x30: ['0', '9'],

0x31: ['1', '8'],

0x32: [L[1], L[0]]

},

(continues on next page)

© 2023 PROCITEC GmbH 153 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

(continued from previous page)

codeword_length=7,

replacement_character='_')

Note: To decode a stream of bits in pyDDL procitec.decoding.AlphabetDecoder should be used.

Warning: DDL source code always uses Latin1 encoding, whereas pyDDL source code has to be UTF-8.
This must be taken into account when converting characters outside the 7-bit ASCII range.

In DDL an alphabet is often used for mapping integer values to strings without the need of any error cor-
rection or level shifting. For that purpose an alphabet is not necessary and a builtin dict is sufficient, as
seen in the following example.

value=2

OutTab(value, 2, 123, 1, 0,,,,)

...

ALPHA_DEF(123)

BitNo = 2

NoLevels = 1

ErrSymb = u ; limitation: only one character allowed

TABLE

0, short

1, medium

2, long

ENDTABLE

END_ALPHA_DEF

In pyDDL this operation can be implemented in a more compact way.

value = 2

out = { 0: "short",

1: "medium",

2: "long", }.get(value, "unknown")

apc.output.text1(out)

The optional MSB_First option in DDL causes a bit reversal of the input code. This is also possible in pyDDL
using the parameter msb_first=True as shown in the following two codeblocks.

ALPHA_DEF(12)

BitNo = 4

NoLevels = 1

ErrSymb = x

MSB_First

(continues on next page)

154 of 158 © 2023 PROCITEC GmbH

PYTHON DECODER DEVELOPMENT Analysis Suite

(continued from previous page)

TABLE

011_b, 1

111_b, 2

001_b, 0

ENDTABLE

END_ALPHA_DEF

import procitec.decoding as ddl

alphabet12 = ddl.Alphabet(

{

0b0011: ['1'],

0b0111: ['2'],

0b1001: ['0'],

},

codeword_length=4,

replacement_character='x',

msb_first=True)

The following alphabet definition is equivalent to the one above. Note the reversed order of bits and the
usage of msb_first=False (which can be omitted as it is assumed by default).

alphabet12 = ddl.Alphabet(

{

0b1100: ['1'],

0b1110: ['2'],

0b1001: ['0'],

},

codeword_length=4,

replacement_character='x',

msb_first=False)

When replacing OutTab with Alphabet.decode or AlphabetDecoder then it should be noted that Out-

Tab only returns a character if exactly one codeword matches the given bit sequence. In case of py-
DDL and several possible codeword matches the first match will be returned. See procitec.decoding.

AlphabetDecoder for details.

© 2023 PROCITEC GmbH 155 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

A. Support

Requests and suggestions?

All requests or suggestions regarding our go2signals product-range are very much appreciated; we would
be delighted to hear from you.

Any questions? We are happy to assist you!

If you have any further questions, please do not hesitate to contact our Support Team for rapid assistance
– just raise a service request at: http://servicedesk.procitec.com.

PROCITEC GmbH
Rastatter Straße 41
D-75179 Pforzheim
Phone: +49 7231 15561 0
Web: www.procitec.com
Email: service@procitec.com

156 of 158 © 2023 PROCITEC GmbH

http://servicedesk.procitec.com
https://www.procitec.com
mailto:service@procitec.com

PYTHON DECODER DEVELOPMENT Analysis Suite

List of Figures

1. Spyder main window . 8
2. Dialog shown upon opening an existing decoder . 9
3. Configuration dialog for decoder execution . 10
4. Dialog for decoder parameters in Execution Mode Decoder only 12
5. Dialog for decoder parameters in Execution Mode Signal processing and decoder 13
6. Decoder output widget in the upper right corner of Spyder’s window. Note the special han-

dling of output on the notify channel: It is displayed on all output tabs in gray color. 14
7. Configuration dialog for decoder output . 15
8. Setting or clearing a breakpoint using the mouse; use left mouse button 15
9. A running debug session. Production ongoing and data position in the statusbar is de-

scribed in Examining and Saving Decoder’s Output . 16
10. Watchlist plugin. Syntax errors are displayed in red. A NameError either indicates that a

variable is not defined yet or that it is misspelled. 18
11. Graphical display of a BitBuffer . 19
12. Graphical display of a BitBuffer . 19
13. Example output of the line profiler . 20
14. OpenGL error . 21
15. Error displayed by the Object explorer for unsupported types 22
16. Decoder module/package warning in Spyder . 24

© 2023 PROCITEC GmbH 157 of 158

Analysis Suite PYTHON DECODER DEVELOPMENT

List of Tables

158 of 158 © 2023 PROCITEC GmbH

	Manual
	Overview
	Tutorial for Writing Decoders
	Support Module hng_fec_alphabet.py
	Main Decoder Module hng_fec_dec.py
	Preface and General Structure
	Decoder Main Function
	Code Structure Alternatives

	Decoder Development Using Spyder
	Creating and Using a New Decoder
	Editing an Existing Decoder
	Running a Decoder
	Execution Mode Decoder only
	Execution Mode Signal processing and decoder
	Decoder Parameters

	Examining and Saving Decoder’s Output
	Debugging a Decoder
	Examining variable values
	Graphical Display of a BitBuffer

	Profiling a Decoder
	Known Spyder Issues
	OpenGL Error
	Object Explorer

	Customizing Python environments
	Adding new packages
	Non-priviliged package installation in Spyder
	Decoder module/package inspection in Spyder

	Using DLLs/Shared Libraries
	Creating Shared Libraries
	Loading External Libraries
	Calling Function from Loaded Libraries
	Passing Scalar Values by Value and by Pointer
	Passing Arrays
	Passing an array of pointers (multidimensional arrays)
	Using Structures
	Retaining Independent States and Using Classes

	Using Libraries Created for Non-Python DDL

	Tools for testing, executing and packaging of decoders
	Executing a decoder
	Using a Python script
	Using the command line

	Bundle a decoder into a decoder package
	Using a Python script
	Using the command line

	Reference
	Decoder Runtime
	Top-Level API
	Input
	Output
	State and Parameters
	File Output
	Audio Output
	Standalone runtime

	BitBuffer
	BitBuffer
	BitStream
	Helper Functions
	Shift Operations
	Bitwise Operations

	Decoding Library
	Synchronisation and Search
	Error Correction and Detection
	Burst Operations
	Pre-Processing
	Bit-Level Pre-Processing
	Symbol-Level Pre-Processing
	Utilities

	Alphabets
	Utilities
	File Output Helpers
	Bit Formatting
	Miscellaneous

	Miscellaneous

	Porting Existing DDL Decoders to pyDDL
	Automatic Conversion
	Quick Reference
	Basic Programming and Language Elements
	Pre-Processing Functions
	Search Functions
	Read Functions
	Read Pointer Functions
	Fractionize Frame
	Reformat and Process Data Packages
	Arrays
	Analyzing, Code Checking and FEC
	Universal Decoding of Block Codes
	Functions for Bit Manipulation
	Operators
	Branch Commands
	Output Functions
	System Functions
	System Variables
	Symbol Tables
	Commands to Control Demodulator Parameters
	Knowledge-Base Demodulator Settings
	Special Commands for Morse Post-Processing
	Measurement Functions
	External Program Control and Interfacing
	Dynamic Link Libraries
	CVSD Speech Decoding
	Special Commands for Data Base Support
	Soft Decision Decoding

	Migration Guide
	Search pattern
	Performing Tasks on Decoder Exit
	Using Golay Block Decoder
	Using Hamming Block Decoder
	Converting Alphabets

	Support
	List of Figures
	List of Tables

